

Annual rhythms can persist in constant darkness

- · Sheep, deer, and hamsters express annual reproduction rhythms in total darkness
- Birds continue to show migrating behavior even when in darkness year-round!
- Experimental models suggest the effect can be transgenerational
- "Endogenous" or "Internal" timekeeper -The hibernating bear has to know when to wake up!

10

- Match milk to calf demand and need

Seasonal rhythms are well conserved.....

Dr. Salfer (U MN) is leading an analysis of 129,530 monthly herd averages in 332 large herds from the Diamond V database (2006 to 2019)

- Rhythms were observed in CA, Pacific NW, California, Pacific Northwest, Southwest, Rocky Mountains, and Upper Midwest
 - Similar time at peak, but differed in amplitude
- Freestalls and open lots had similar rhythms
- 2x and 3x milking frequency had similar rhythms

Sanchez, Johnson, Harvatine, and Salfer. 2020 ADSA

29

What does heat stress do to milk yield and composition?

Reference	MY, Ib	Fat, %	Prot, %
Rungruang et al. 2014	-7.8	0.20	-0.10
Baumgard et al. 2011	-13.6	0.28	-0.12
Wheelock et al. 2010	-21.1	0.60	-0.27
Rhoads et al. 2009	-23.3	0.34	-0.13
Schwartz et al. 2009	-22.2	0.06	-0.22

• Generally a decrease in milk yield and milk protein percent and an increase in fat percent

- An annual rhythm explains the data better than temperature variation

30

What do I think is going on?

Two seasonal time-keepers:

- Milk composition is driven by lengthening and shortening days and aligns with the solstice
- Milk yield is driven by rate of change in day length and aligns with the equinox
- Constant long days appears to be setting physiology of the spring equinox (increased milk yield and no change in composition)

- This may be because of "photo-refractoriness", where an animal held under constant conditions will revert to the opposite season

1. Account for energy needed when outside of thermoneutral zone (too hot or cold)

- This changes protein to energy ratio
- Watch MUNs to track this

2. Manage to reduce additional effect of heat stress during the summer

- Cow cooling
- Watch feeding behavior (Slug feeding)
- Silages and feed stability
 - At the silage face
 - In the feed bunk (especially if in the sun)

Fixing "seasonal" management issues!

- Corn silage
 - Try to have enough carry-over
 - Factor in increased fermentability as stored
- Maintain herd DIM through good repro program - Some seasonality to fertility plus heat-stress

- Seasonal pattern in colostrum synthesis appears to also happen and is lowest in the fall

- Make sure to stockpile!

- Short-day lighting during dry period might help, but has not been investigated

37

Key Principles

- The is a seasonal rhythm of milk yield and composition that varies by region, so we need to change our goals across the year
- Managing for long day photoperiod is a well supported recommendation

 Requires a dark period of the day
- Right now, we do not know how to eliminate the rhythm, but we should try to not make it worse!
 - Heat stress and forage changes etc.

