Bacillus coagulans GBI-30, 6086 in Extruded Pet Food Applications

Heather Acuff, M.S. Ph.D. Candidate Advisor: Dr. Greg Aldrich Department: Grain Science & Industry

Department of Grain Science and Industry

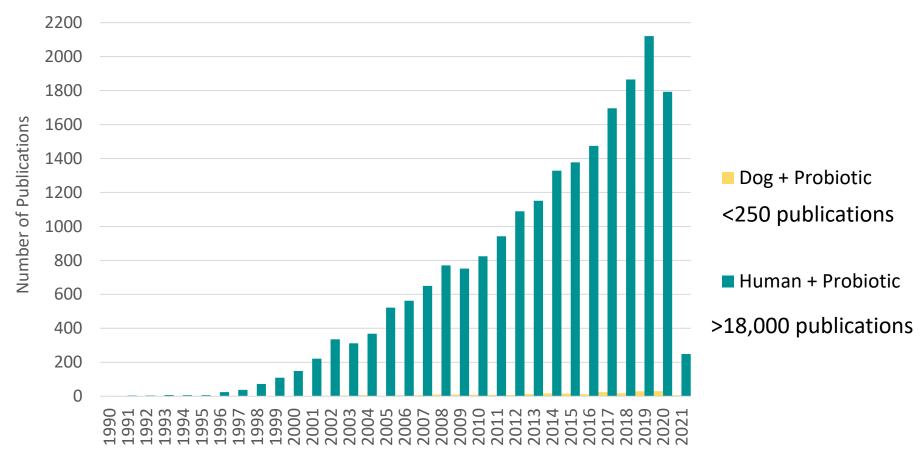
KANSAS STATE

UNIVERSI

What are probiotics?

IVERSI

"Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host."


– Hill et al. (2014)

"Functional" pet foods, such as those containing probiotics, offer enhanced health benefits beyond supplying essential nutrients when consumed on a regular basis (Di Cerbo, 2017).

 \blacktriangleright Key growth driver of the \$38.4 billion U.S. market pet foods and treats in the (APPA, 2020).

KANSAS STATE **Department of Grain Science** and Industry

PubMed Open-Access Database Search

Year of Publication

Department of Grain Science and Industry

KANSAS STATE

UNIVERSIT

Reported Health Benefits of Probiotics in Dogs

(Reviews: Vester and Fahey Jr., 2010; Markowiak et al. 2018)

Stool Quality

Reduced incidence of diarrhea, constipation, and improved stool quality

Nutrient Utilization

Improvements to apparent total tract digestibility, weight gain, and epithelium health

KANSAS STATE

UNIVERSITY

Balance Microflora

After antibiotics, during weaning, or kenneling stress

Immune System

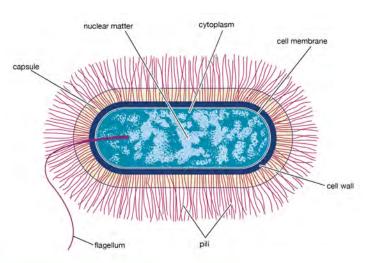
Reduced intestinal inflammation and hypersensitivity to diet

Department of Grain Science and Industry

Hurdles to Probiotic Viability in Pet Food

(Reviews: Tripathi and Giri, 2014; Terpou et al. 2019)

53%


KANSAS STATE

UNIVERSITY

of sampled commercial pet foods were found to be severely inadequate with respect to strain identity and colony-forming unit guarantees on pet food labels (Weese and Arroyo, 2003).

Properties of Vegetative Cells

- Metabolically Active
- Lower thermal tolerance
- Poor survival in processed foods
- Less retention in storage
- Lower Acid/Bile Resistance

Properties of Spores

- Metabolically Dormant
- Higher thermal tolerance
- Higher Acid/Bile Resistance
- Longer retention in storage
- Better survival in processed food?

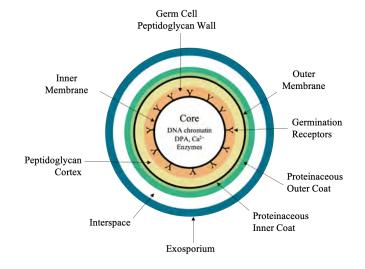


Image source: Encyclopedia Britannica.com

KANSAS STATE

UNIVERSITY

Department of Grain Science and Industry

Bacillus coagulans GBI-30, 6086:

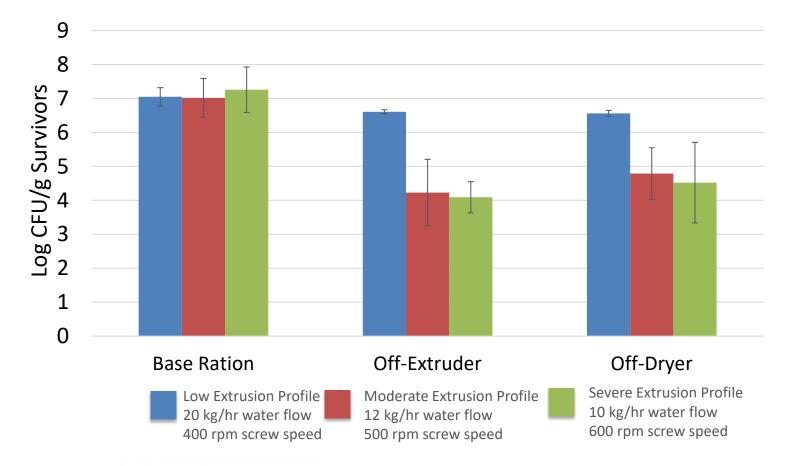
- GRAS, non-toxigenic at high doses (10¹¹ CFU/kg BW in humans)
- Spore-forming
- Lactic acid-producing
- Gram-positive rod
- Transient (non-adhering)
- Microaerophilic
- Optimum growth temperature range is 30 50 °C
- Thermotolerant (>90 °C)
- Acid-tolerant

Experiment 1: Processing

Extrusion Processing Parameters

		Extrusion	Treatment ¹		
Process Parameter	Low SME	Moderate SME	Severe SME	SEM ²	<i>P</i> -value ³
System Inputs					
Screw Speed (rpm)	401.83 ^c	500.79 ^b	602.17 ^a	0.377	<0.0001
Water Flow (kg/h)	19.58 ^a	11.68 ^b	9.97 ^c	0.096	<0.0001
System Outputs					
In-Barrel Moisture (%)	35.47 ^a	29.13 ^b	27.78 ^c	0.170	<0.0001
Motor Load (%)	41.42 ^c	44.69 ^a	43.38 ^b	0.454	<0.0001
Power (kW)	6.28 ^b	9.43 ^a	9.81 ^a	0.387	<0.0001
Die Exit Temp. (°C)	107.71 ^b	134.34 ^a	138.04 ^a	3.562	<0.0001
Wet Flow Rate (kg/h)	83.18 ^a	73.71 ^b	70.81 ^b	1.390	<0.0001
Barrel Residence Time (s)	91.8	93.3	87.3		
SME (kJ/kg)	122.12 ^b	219.30 ^a	195.12 ^a	8.728	<0.0001

SME = Specific Mechanical Energy


¹ Treatments: Low SME = 20 kg/h extruder water flow with 400 rpm screw speed; Moderate SME = 12 kg/h extruder water flow with 500 rpm screw speed; Severe SME = 10 kg/h extruder water flow with 600 rpm screw speed.

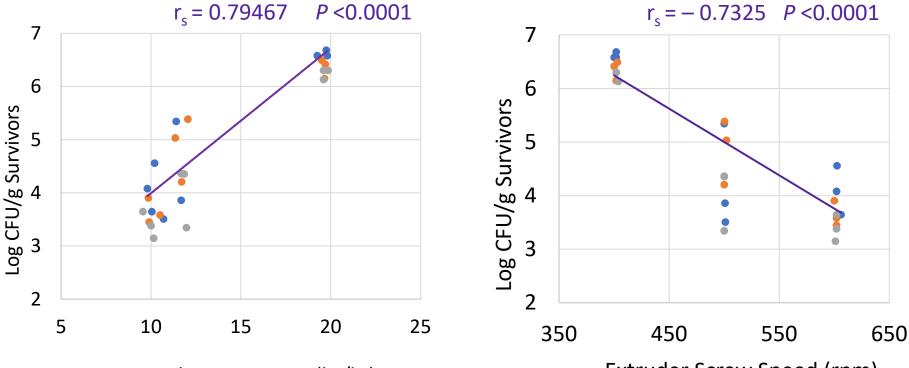
² SEM: standard error of the mean

³ P-values represent Type III fixed effects of extrusion profile.

Results: Extrusion

Survival of Bacillus coagulans Subjected to 3 Extrusion Profiles

Note: All treatments were dried at 107 °C for 16 min


Department of Grain Science and Industry

KANSAS STATE

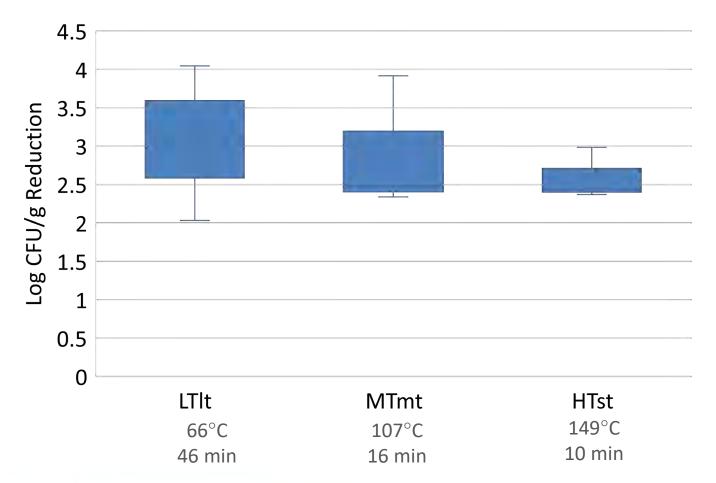
UNIVERSITY

Results: Extrusion

Spearman correlations demonstrating the direction and strength of relationship between extruder water input and extruder screw speed on Bacillus coagulans survival.

Extruder Water Input (kg/hr)

KANSAS STATE


IVERSI

U N

Extruder Screw Speed (rpm)

Results: Dryer

Loss in Viability Under 3 Dryer Conditions

Note: All treatments were produced under moderate extrusion conditions (12kg/hr water flow 500 rpm screw speed)

Experiment 2: Dog Feeding Study

- Institutional Animal Care and Use Committee (IACUC) protocol #4097 and IBC protocol #1187 at Kansas State University
- 10 healthy adult Beagle dogs (3 females/spayed, 7 males/castrated) of similar age (5.75 ± 0.23) and body weight (12.3 ± 1.5 kg) were randomly assigned 5 experimental diets containing graded doses of *Bacillus coagulans*
- Total study duration: 105 days

)og II	D	
_		1	2	3	4	5
	1	В	А	Е	С	D
p	2	D	Е	В	А	С
Period	3	Е	С	D	В	А
P	4	С	D	А	Е	В
	5	А	В	С	D	Е

			۵) og I[)	
		6	7	8	9	10
	1	D	Е	В	А	С
pq	2	Е	С	D	В	А
Period	3	В	Α	Е	С	D
P	4	А	В	С	D	Е
	5	С	D	Α	Е	В

ADAPTATION		COL	LECTI	ON	
Days 1 - 16	17	18	19	20	21

Experiment 2: Dog Feeding Study

Experimental Diet Ingredient Comp	osition	Proximate Analysis of Experimenta	al Diet
Ingredients	Amount, %	Nutrient	Analysis, As-Is
Chicken Meal	34.635	Moisture, %	4.92
Peas, Dehydrated	20.000	Crude Protein, %	34.90
Sweet Potatoes, Flaked	20.000	Crude Fat, %	15.60
Chicken Fat	8.500	Crude Fiber, %	3.28
Tapioca Flour	5.000	Ash, %	9.21
Pea Protein	5.000	Nitrogen-Free Extract (NFE), %	32.09
Beet Pulp	3.000	Metabolizable Energy, kcal/kg	3,671
Digest Flavoring	1.000	¹ Formulated to meet the AAFCO Dog	Food Nutrient
Potassium Chloride	0.500	Profiles for adult maintenance (AAFC	
Salt	0.500		
Dicalcium Phosphate	0.500		
Titanium Dioxide	0.400		
DL-Methionine	0.250		
Choline Chloride	0.200		
Fish Oil	0.200		
Vitamin Premix	0.150		
Trace Mineral Premix	0.100		
Natural Antioxidant	0.065		
<i>B. coagulans</i> (15B CFU/g)	*		

*Each experimental diet contained differing levels of *B. coagulans* applied shown in next slide.

Dietary Treatments

Application method and levels of *B. coagulans* in five experimental dietary treatments

B. coagulans Treatment	CON	PEX ¹	PCL ²	PCM ²	PCH ²
Application Method	None	Base Ration	Coating	Coating	Coating
Total CFU/g in Diet	0.00	1.06 x 10 ⁴	5.92 x 10 ⁴	6.86 x 10 ⁵	6.84 x 10 ⁶
Dose (CFU/dog/day) ³	0.00	2.12 x 10 ⁶	1.18 x 10 ⁷	1.37 x 10 ⁸	1.37 x 10 ⁹

¹Diet B contained *B. coagulans* applied in the dry base ration before extrusion and drying.

²Diets C-E were coated simultaneously with *B. coagulans* chicken fat and digest flavoring on the exterior of the kibble after drying.

³Based on an average daily food intake of 200 g/dog/day.

Results: Stool Quality

Food Intake and Stool Quality of Dogs fed diets with differing levels of Bacillus coagulans

Parameter	CON	PEX	PCL	PCM	РСН	SEM	P-Value
Food Intake, g/day	189.23	198.82	200.91	197.96	197.40	6.21	0.1364
Fecal Output, g/day	112.60	119.72	126.34	114.25	116.72	5.15	0.1356
Fecal Moisture, %	70.25	69.98	70.30	69.71	70.19	0.45	0.6415
Fecal Dry Matter, %	29.75	30.02	29.70	30.29	29.81	0.45	0.6415
Defecations per Day	2.00	2.12	2.18	2.02	1.98	0.11	0.3041
Fecal Score	3.70	3.71	3.75	3.77	3.68	0.05	0.5508

¹SEM = standard error of the mean

²*P*-value represents Type 3 Test of Fixed Effects for Diet

Results: Nutrient Digestibility

Apparent total tract digestibility of dogs fed diets with differing levels of *Bacillus coagulans*

Digestibility, %	CON	PEX	PCL	PCM	РСН	SEM	<i>P</i> -Value ¹
Dry Matter	79.04 ^b	79.45 ^b	78.65 ^b	78.75 ^b	81.77ª	0.718	0.0034
Organic Matter	83.67 ^b	84.36 ^{ab}	83.51 ^b	84.01 ^{ab}	85.79 ^a	0.553	0.0101
Crude Protein	81.64	81.95	81.70	81.77	83.60	0.547	0.0743
Crude Fat	91.69	90.28	90.96	90.85	91.69	2.097	0.1981
Ash	34.94 ^b	36.23 ^b	33.76 ^b	31.06 ^c	46.31ª	2.506	<0.0001
Gross Energy	81.94 ^{ab}	81.66 ^b	82.03 ^{ab}	80.08 ^b	83.96ª	0.595	0.0002

 abc Means within a row with different superscripts differ (P < 0.05).

¹Treatments: CON = control; PEX = probiotic applied before extrusion; PCL = probiotic applied as coating at low dose;

PCM = probiotic applied as coating at moderate dose; PCH = probiotic applied as coating at high dose.

² P-value represents Type 3 Test of Fixed Effects for Diet

Results: Gut Health Indicators

Fecal fermentation compounds of dogs fed diets with differing levels of *B. coagulans*.

Parameter	CON	PEX	PCL	PCM	РСН	SEM	P-Value
Fecal pH	5.49	5.36	5.44	5.41	5.33	0.06	0.4434
Fecal Ammonia, µmol/g DM feces	99.99	105.49	107.12	104.61	94.30	9.43	0.8414
Total SCFA, ¹ µmol/g DM feces	171.28	183.64	197.20	179.36	192.22	16.68	0.7924
Acetate, %	52.24	54.04	53.10	53.31	53.16	1.22	0.6637
Propionate, %	37.07	36.91	37.75	36.91	37.61	1.37	0.9212
Butyrate, %	10.69	9.05	9.16	9.78	9.23	0.61	0.2327
Total BCFA, ² µmol/g DM feces	11.05	9.02	9.48	12.09	9.61	1.50	0.5781
Isovalerate, %	47.97	52.24	49.53	44.74	46.79	2.08	0.1395
Isobutyrate, %	33.93	32.44	35.67	32.27	36.52	1.59	0.2216
Valerate, %	18.10	15.33	14.81	22.98	16.68	2.47	0.1337

¹Total short-chain fatty acids (acetate + propionate + butyrate); Individual SCFA are expressed as a percent of total SCFA. ²Total branched-chain fatty acids (isobutyrate + isovalerate + valerate); individual BCFA are expressed as a percent of total BCFA.

³*P*-value represents Type 3 Test of Fixed Effects for Diet

Overall Conclusions

Survival Through Pet Food Extrusion & Drying

- Bacillus coagulans GBI-30, 6086 survived extrusion of pet food under three processing profiles, with a 2 – 3 log reduction expected under moderate conditions.
- Viability validation is necessary (process parameters, equipment, formula)
- Dryer conditions did not have a significant effect on retention, however greater variability was observed for the low temperature-long time treatment.
- > Effects on Gastrointestinal Health Indices in Healthy Dogs:
 - Apparent digestibility of DM, OM, Ash, and GE were highest for the 9-log₁₀ dose treatment.
 - Crude protein digestibility tended (P < 0.10) to increase as probiotic dose increased.
 - No significant differences were observed in food intake, stool quality, gastrointestinal health indicators including fecal pH, fecal ammonia, or fecal short chain fatty acids in this study.

Acknowledgements

This research was funded by

Kerry, Inc. (Beloit, WI)

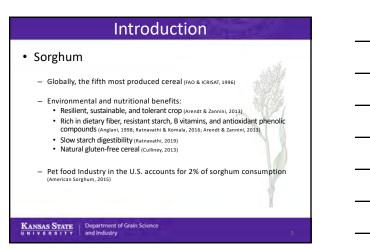
KANSAS STATE UNIVERSITY Department of Grain Science and Industry

References

- 1. APPA (American Pet Products Association). 2020. Pet industry market size & ownership statistics. Stamford, CT. Available from: http://www.americanpetproducts.org/press_industrytrends.asp. Accessed March 5, 2021.
- 2. Di Cerbo, A., J. C. Morales-Medina, B. Palmieri, F. Pezzuto, R. Cocco, G. Flores, and T. Iannitti. 2017. Functional foods in pet nutrition: Focus on dogs and cats. Res. Vet. Sci. 112:161–166. doi:10.1016/j.rvsc.2017.03.020.
- Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, and M. E. Sanders. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–514. doi:10.1038/nrgastro.2014.66.
- 4. Markowiak, P. and K. Ślizewska. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 10, 1–20. doi:10.1186/s13099-018-0250-0.
- Terpou, A., A. Papadaki, I. K. Lappa, V. Kachrimanidou, L. A. Bosnea, and N. Kopsahelis. 2019. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 11:1591. doi:10.3390/nu11071591.
- 6. Tripathi, M. K., and S. K. Giri. 2014. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods. 9:225–241. doi:10.1016/j.jff.2014.04.030.
- Vester, B. M., Fahey Jr., G. C. 2010. Prebiotics and probiotics in companion animal nutrition, in: Cho, S. S., and Finocchiaro, E. T. (Eds.), Handbook of prebiotics and probiotics ingredients: health benefits and food applications. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 355–380.
- 8. Weese, J.S., Arroyo, L., 2003. Bacteriological evaluation of dog and cat diets that claim to contain probiotics. Can. Vet. J. 44, 212–216.

1

Introduction


• Pet Treats

- Not intended to meet the complete nutritional needs of the animal
 <10% daily energy requirement
- Global pet treats market projection for 2021 \rightarrow US\$ 31.37 billion (Technavio Research, 2017)
- Hard texture
 Dental benefits
- Cereal is the main ingredient
 Wheat

Different shaping technologies
 Rotary molding

KANSAS STATE UNIVERSITY Department of Grain Scien and Industry

- Proteins
 - Provide dough enhancement, amino acid enrichment, and generate satiety effects (Nogueira & steel, 2018).
 - Dogs can utilize <u>either</u> vegetable or animal proteins. Nonetheless, animal-proteins can be more palatable with better olfactory properties (Beaver et al., 1992; Brown, 2009; Houpt et al., 1978).
 - Spray-dried plasma, egg whites and gelatin contain high amounts of serum albumin, ovalbumin, and collagen, respectively (Jayathilakan et al., 2012).
 - Water binding ability, gelling strength and emulsifying properties (Pérez-Bosque et al., 2016; Rodríguez et al., 2016).
 - Improve texture and maintain a high degree of cohesion (adhesive) between the ingredients when cooked (Polo et al., 2005).

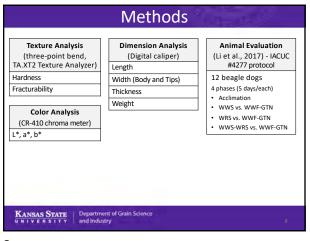
KANSAS STATE UNIVERSITY Department of Grain Science and Industry

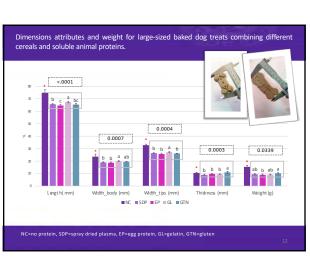
4


Research Questions

- Can we produce a rotary molded sorghum-based ("gluten-free") treat with the same characteristics as wheat-based product?
- Can the addition of proteins emulate the response of gluten?

	WWF- GTN	WWS- NC	WWS- SDP	WWS-	WWS- GL	WRS- NC	WRS- SDP	WRS- EP	WRS- GL
Whole wheat flour	70.1	-	-	-	-	-	-	-	-
Whole red sorghum flour	-	-	-	-		68.6	69.0	65.3	69.8
Whole white sorghum flour	-	68.6	68.9	65.3	69.8	-		-	-
Cornmeal	17.5	19.1	12.5	11.8	12.5	19.1	12.5	11.8	12.5
Spray-dried plasma	-	-	6.22				6.23	-	-
Egg protein	-	-	-	11.28				11.28	-
Selatin	-	-	-		5.35		-		5.35
Water (% added on top other ingredients)	24.5	41.1	28.9	24.6	31.0	41.1	29.2	27.5	32.8




-

.

7

11

a-d: M WWF=

Treatments	Hardness,	Fracturability,
meatments	kg	mm
WWF-GTN	10.04 ^b	1.16 ª
WWS-NC	0.83 ^d	0.63 ^b
WWS-SDP	4.93 °	0.63 ^b
WWS-EP	14.15 °	1.24 ª
WWS-GL	1.89 ^{cd}	0.48 ^b
WRS-NC	0.82 ^d	0.66 ^b
WRS-SDP	5.17 °	0.65 ^b
WRS-EP	12.74 ab	1.01 ^a
WRS-GL	1.87 ^{cd}	0.47 ^b
SEM	0.792	0.056
P-value model	<.0001	<.0001

Color attributes for dog treats combining different cereals and soluble animal proteins.

a*

6.86 bc

5.96 bc

7.13 ^{bc}

7.43 ^{bc}

5.45 °

6.97 ^{bc}

7.87 ^{ab}

9.74 ^a

7.21 ^{bc}

0.409

<.0001

with different lowercase superscripts within a column represent statistical difference among treatments (P<0.05). le wheat flour, WWS= whole white sorghum, WRS= whole red sorghum, GTN=gluten, NC=no protein, SDP=spray dried

b*

22.69 ª

21.74 ^a

22.57 ª

21.33 ª

22.23 ª

17.44 ^b

17.47 ^b

18.25 ^b

17.42 ^b

0.409

<.0001

L*

54.61 ^a

54.38 ^{ab}

50.81 ^{abc}

47.87 bcd

54.59 ^{ab}

53.34 abc

46.62 ^{cd}

42.77 ^d

49.91 abc

<0.001

1.36

Treatments

WWF-GTN

WWS-NC

WWS-SDP

WWS-EP

WWS-GL

WRS-NC

WRS-SDP

WRS-EP

WRS-GL

P-value model

SEM

Treatment	WWF GTN	WWS NC	WWS SDP	WWS FP	wws GL	WRS NC	WRS SDP	WRS	WRS GI	SEM	P-value
	2.90 bc		2.84 bc		3.20 ab	NC	SDP	EP	GL		
WWF-GTN / WWS	2.90 %	3.70 *	2.84 bc	2.36 °	3.20 40	-	-	-	-	0.192	0.000:
WWF-GTN / WRS	2.84	-	-	-	-	3.28	2.82	2.84	3.22	0.200	0.2822
WWF-GTN /WWS /WRS	3.35	-	2.75		3.00	-	2.78		3.13	0.190	0.1619
whole wheat flour, WWS= EP=egg protein, GL=gelati		sorginum,		010 120 30	.g.u.ii, 011	Brateri,		incin, dor	-spray u		u,

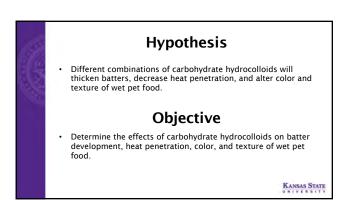

13

Conclusions

- The texture of the sorghum treatments was significantly enhanced by the action of the proteins added, wherein the EP led to higher values.
- The proteins included, especially EP and SDP created darker products after baking.
- The dogs did not detect differences between WWF-GTN, WWS, or WRS treats when evaluated together. However, some trouble when eating the EP treatments were perceived.

KANSAS STATE Department of Grain Science and Industry

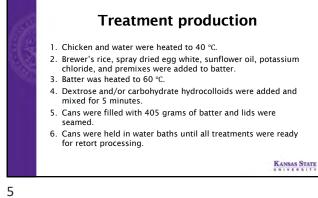
Amanda N. Dainton, MS and Charles G. Aldrich, PhD Department of Grain Science & Industry Kansas State University 2021 March 16

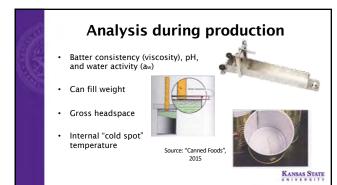

KANSAS STATE

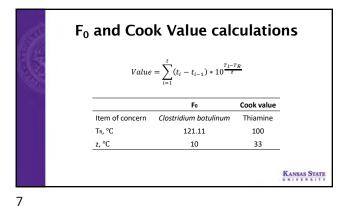
1

Introduction to carbohydrate hydrocolloids Included in wet pet food formulations to provide structure and

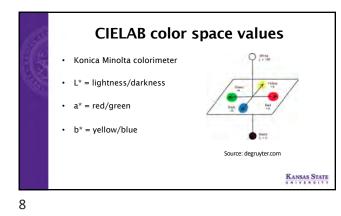
- Included in wet pet food formulations to provide structure and filling viscosity.
 - Commonly referred to as "gums" or "gels"
- Can influence nutrient digestibility (Karr-Lilienthal et al., 2002; Zentek et al., 2002).
- Functional effects in wet pet foods are not documented in peer-reviewed literature.
 - Some information related to sausage production, but processing methods are different.

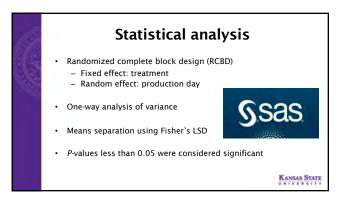

KANSAS STATE

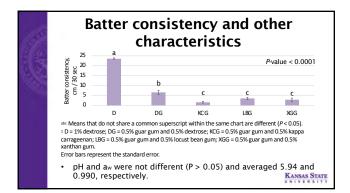


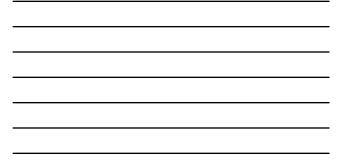

Experimental	treatments

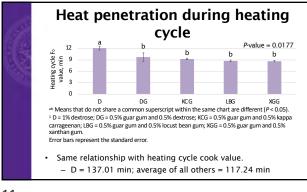

Ingredient ¹ , %	D^2	DG ²	KCG ²	LBG ²	XGG ²			
Dextrose	1.00	0.50	-	-	-			
Guar gum	-	0.50	0.50	0.50	0.50			
Kappa carrageenan	-	-	0.50	-	-			
Locust bean gum	-	-	-	0.50	-			
Xanthan gum	-	-	-	-	0.50			
¹ Other ingredients: 56.00% chicken, 38.35% water, 3.00% brewer's rice, 0.50%								
potassium chloride, 0.50% spray dried egg white, 0.50% sunflower oil, 0.10% vitamin premix, and 0.05% trace mineral premix								
$^{2}D = 1\%$ dextrose; DG = 0.5% dextrose and 0.5% guar gum; KCG = 0.5% guar								


gum and 0.5% kappa carrageenan; IBG = 0.5% guar gum and 0.5% locust bean gum; XGG = 0.5% guar gum and 0.5% xanthan gum









(j)	Changes in color									
15 TUAT		D	DG	KCG	LBG	XGG	SEM	P-value		
1000	L*	53.61°	56.88 ^b	57.59 ^{ab}	59.09ª	58.65 ^{ab}	1.044	0.0023		
100	a*	8.18ª	8.56ª	4.03 ^b	4.68 ^b	4.51 ^b	1.180	0.0108		
	b*	21.40ª	22.69ª	14.64 ^b	15.93 ^b	15.59 ^b	1.511	< 0.0001		
	^{abc} Means that do not share a superscript are different ($P < 0.05$).									
		F	rom left t	to right: D	D, DG, KC	CG, LBG, a	nd XGG	8		

Conclusions

- Carbohydrate hydrocolloids thicken batters, slow heat penetration, and provide structure in finished products.
- Dextrose affects product color by darkening and increasing red and yellow hues.

Future work

- Texture analysis
- Expressible moisture
- Evaluation of novel gums, gels, and functional ingredients in wet pet foods

KANSAS STATE

