Methyl donors and epigenetic regulation of the early embryo

P.J. Hansen
Dept. of Animal Sciences
University of Florida

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

98 kg at birth picture at 2 days of age

8722 - IVF

Dried placenta weight -9.1 g Cotyledon diameter -3.5 cm Fetal weight -152 g Liver weight -6.6 g Heart weight -1.4 g

7348 - IVF + CSF2

Dried placenta weight – 34.1 g Cotyledon diameter – 5.6 cm Fetal weight – 354.3 g Liver weight – 18.6 g Heart weight - 4.5 g

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation

• There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

Choline effects on embryo development

Criteria for concentration selection	[Choline chloride]	Sodium Chloride
Control	0.00 mM	6.37 mM
Total concentration of free choline in plasma of lactating dairy cows at week 1 postpartum	0.004 mM	6.37 mM
Total concentrations of choline in plasma of lactating dairy cows at week 1 postpartum	1.30 mM	5.07 mM
Total concentrations of choline in plasma of lactating dairy cows at week 1 postpartum assuming feeding RPC increased [choline] by 0.5 mM	1.80 mM	4.57 mM

Artegoitia et al., 2014; Zenobi and Staples, unpublished

Choline effects on establishment of pregnancy and phenotype of offspring

Embryo transfer Vehicle n=57 ET Choline n=43 ET

Pregnancy

Birth weight diagnosis

Weaning weight

Statistical analysis

28 d after ET

- For embryo development and pregnancy rate, proc Glimmix binary distribution, treatment and sire effects were included in the model
- For birth weight and weaning characteristics of calves, proc GLM, treatment, donor and sire effects were included in the model

Sex	Treatment	Gestation length, days
Females n=1	.3 Vehicle	289.8 ± 1.4
Females n=1	.1 Choline	294.6 ± 1.5
Males n=9	Vehicle	289.6 ± 1.7
Males n=6	Choline	293.6 ± 1.38

