

Pathway	Choline Chloride Methionine
Lipid Export	
VLDL	↔
TG	↓ 🗸 🔸
Oxidation	
Complete oxidation (TCA cycle)	↑ ↔
BHB production (incomplete oxidation)	↓ 🗸 🔶
ROS secretion	++
Glucose Metabolism	t /
glycogen	! <u> </u>
Inflammatory Response	
Glutathione production	••••••••••••••••••••••••••••••••••••••
Methionine Regeneration	
(aka methyl donation)	

Pre- and postpartum Me	DEPARTMENT OF DAIRY SCIENCE University of Wisconsin-Madiso					
Author	Year	Parity	Pre (d)	Post (d)	Extra mMet (g)	n/trt
Griel et al.	1968	-	21	56	-	14
Overton et al.	1996	≥ 2	7 to 10	126	20	12
Xu et al.	1998	≥ 2	21	168-301	8 - 13	14
Phillips et al.	2003	≥ 2	21	120	8	10 - 11
Piepenbrink et al.	2004	≥ 2	21	84	13 - 17	16
Socha et al.	2005	≥ 2	21	42	8	21
Johnson- VanWieringen et al.	2007	1, 2	21	119	7	25
Ordway et al.	2009	1, 2	21	140	12 - 15	20
Preynat et al.	2009	≥ 2	21	112	9.2	10
Preynat et al.	2009	≥ 2	21	112	9.2	6
Osorio et al.	2013	≥ 2	21	30	11 to 12	12 - 14
Zhou et al.	2016	≥ 2	21	30	18	20 - 21
Batistel et al. I	2017	≥ 2	28	1 - 30	15	30
Batistel et al. II				31 - 60	16	
Compiled by Mateus Zucato Toledo						

Inflammation and Oxidative Stress Related but may be more complex than a direct relationship Methionine mitigates inflammatory markers and increases glutathione Choline decreases ROS without change in glutathione We are still learning what these balances mean during the transition to lactation period. . . .

