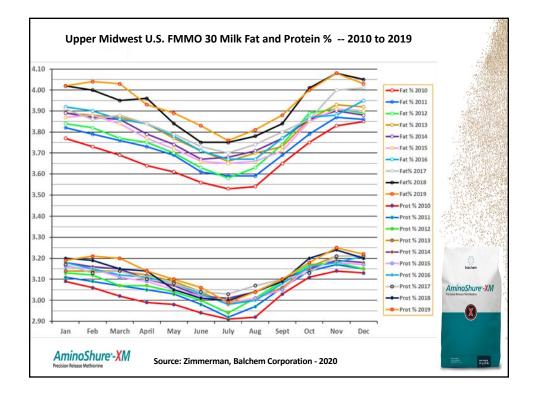
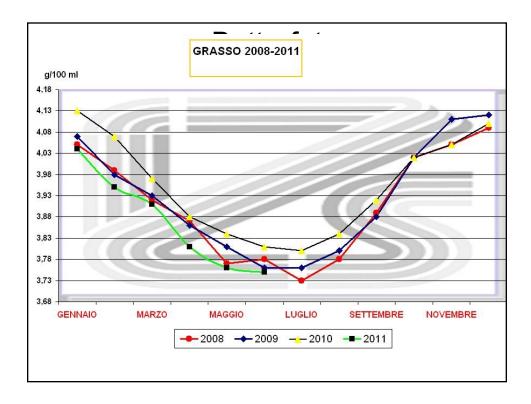
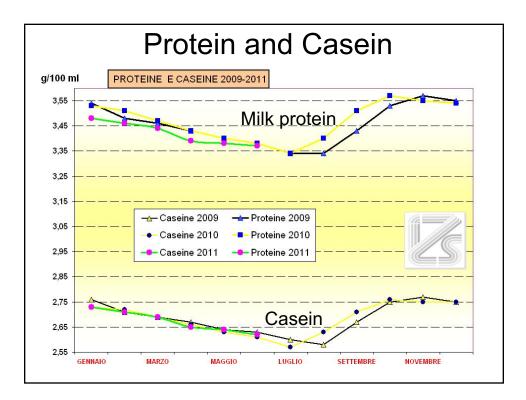

Today's discussion


- Milk protein is at an all time high how do we capture that income opportunity
- Revisiting fermentable carbohydrates, forage vs byproducts and DMI
- DCAD move it up
- Fatty acids new data and fairly easy to implement
- Spend some money on rumen protected AA but make sure you don't overfeed protein


•Summary



Simple things to ensure best productivity

- Cooling, fans, sprinklers reduce heat stress and increase cow comfort
- · Promote DMI and lying time
 - make sure feed availability 21 to 22 h/d
 - work towards >12 h lying time per day

Formulation considerations for amino acid balancing

Start with the basics:

- 1. Do we have current feed chemistry that includes NDF digestibility?
- 2. Have we characterized the cows appropriately?
- 3. Do we have DMI and when used on a pen basis, does actual mil line up with the ME and MP allowable milk?
- 4. Do we have BCS changes that would help with evaluation of early to peak lactation cattle?
- 5. What is first limiting milk yield?

Formulation/Input conditions that drive me crazy:

Cows weigh 1,650 to 1,800 lb but the nutritionist is using 1,350 to 1,450 lb to formulate

Not using actual DMI

Not using current feed chemistry or just minimum data like CP, NDF and basic analysis OR just using library values

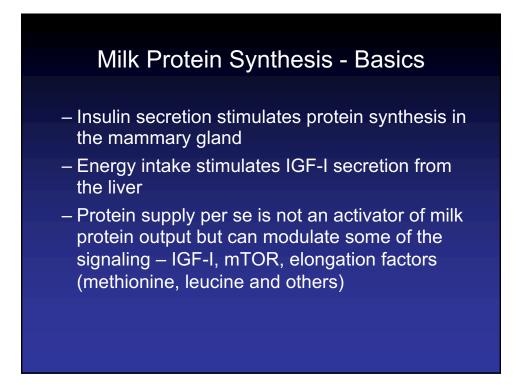
Not taking the time to get the cows and the diet formulation system to agree with each other

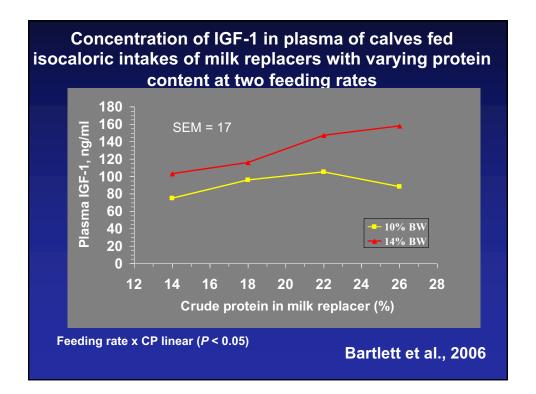
mature	5 3126	of 1,764 I	U				
	Ν	letab Energy (Mcal/	day)	Me	etab Protein (g	g/day)	
	Avail	Rad	Diff	Avail	Rad	Diff	\mathbf{N}
Total	80.8	80.5	0.4	3495	3533	-38	
Maint	80.8	17.4	63.4	3495	964	2530	
Preg	63.4	0	63.4	2530	0	2530	
Lact	63.4	60.8	2.6	2530	2486	45	
Growth	2.6	2.2	0.4	45	83	-38	
Reserves	0.4	0	0.4	0	38	-38	
DMI Predicted		64.37 lbs/day		Pept & NH3 Bal		81 g/d	135%
DMI Actual		66.78 lbs/day		Pept Bal		198 g/d	194%
Predicted Ruminal	рH	6.36		Urea Cost	Urea Cost		
Target Growth		0.46 lbs/day		Target Milk		120.0 lbs/day	
Inputted Growth		0.46 lbs/day					
ME Allowable Grow	th	0.46 lbs/day		ME Allowable M	ilk	120.7 lbs/day	
MP Allowable Grow	th	0.25 lbs/day		MP Allowable M	ilk	118.2 lbs/day	

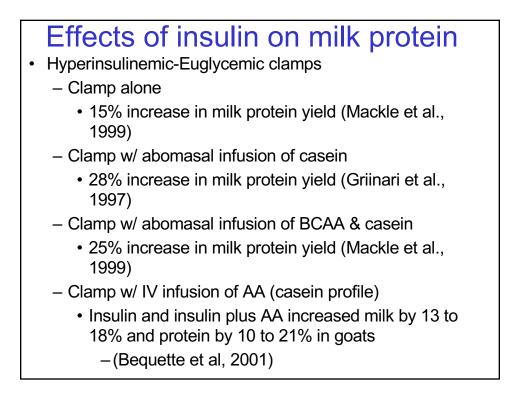
Same die measure		ame intal	ke mod	eled with	1,350	lb cow a	t
	N	letab Energy (Mcal/	day)	M	etab Protein (g	ı/day)	
	Avail	Rqd	Diff	Avail	Rqd	Diff	
Total	80.2	76.3	3.9	3536	3452	84	
Maint	80.2	15.5	64.8	3536	967	2569	
Preg	64.8	0	64.8	2569	0	2569	
Lact	64.8	60.8	3.9	2569	2486	84	
Growth	3.9	0	3.9	84	0	84	
Reserves	3.9	0	3.9	84	0	84	
DMI Predicted		60.01 lbs/day		Pept & NH3 Bar		79 g /d	135%
DMI Actual		66.78 lbs/day		Pept Bal		190 g/d	193%
Predicted Ruminal p	н	6.36		Urea Cost		0.10 Mcal/d	
Target Growth		0.00 lbs/day		Target Milk		120.0 lbs/day	
Inputted Growth		0.00 lbs/day					
ME Allowable Growt	h	0.67 lbs/day		ME Allowable M	ilk	127.7 lbs/day	
MP Allowable Growt	h	0.45 lbs/day		MP Allowable M	ilk	124.0 lbs/day	

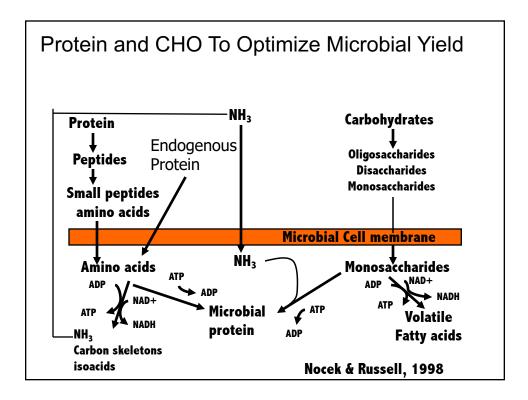
Role of energy nutrition in milk protein synthesis

- Sporndly (1989) reported much stronger relationship of milk protein percentage with dietary energy intake than dietary protein intake
 - Often attributed to ruminal fermentation and microbial protein synthesis
 - Sugars, starches, and digestible fiber sources will drive microbial protein yield

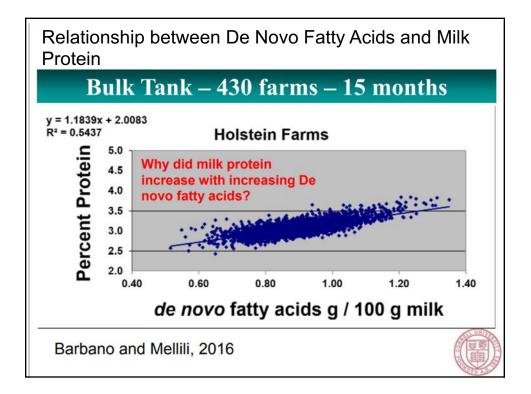

Protein-energy interactions


"Although it has been traditional to consider 'protein' and 'energy' metabolism as separate entities in mammalian metabolism, most scientists recognize this is an artificial divide. Indeed, they should be considered together as this reflects how nutrients are ingested and utilized as part of normal feeding patterns during evolution."

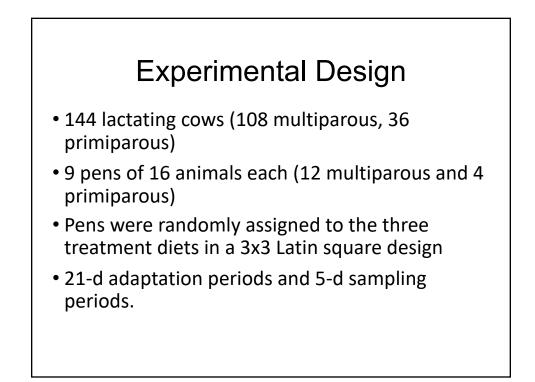

Lobley, G. E. 2007. Protein-energy interactions: horizontal aspects. Pages 445-462 in Proc. Energy and protein metabolism and nutrition. Butterworths, Vichy, France.

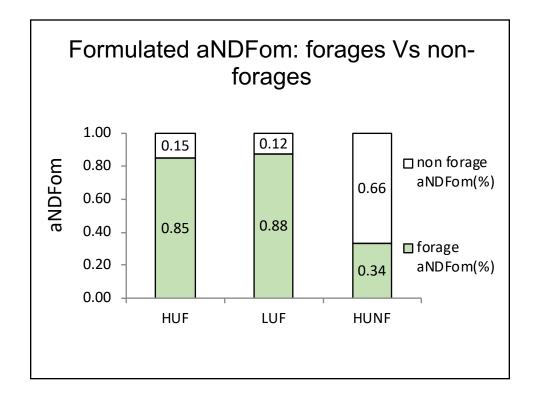

Milk Yield and Milk Protein Synthesis

- Are energy driven events
 - Relies on an adequate supply of amino acids
 - Driven by propionate production in the rumen
 - Propionate converted to glucose in the liver which in turn stimulates insulin secretion
 - Intestinal glucose absorption also supplies energy substrate but there is a discount on energy for lactose synthesis – based on the data of Reynolds et al. and others, about an 18% discount due to tissue use prior to mammary availability



	nentable No timize Mici		,				
Stage of lactation	Fermentable NSCHO, % DM	Fermentable starch, %DM	Fermentable sugar, %DM	Fermentable soluble fiber, %DM			
Early	40-41	18.5 - 20	6	6			
Peak	43 22 - 24 7 5						
Mid	40	18.5 – 20.5	6	5			
Hoove	Jh cows – 86 r: Sugar in t ial yield and pa	he 5% to 7%	‰ range impr	oved			
			Modified	from Sniffen et al.			


Irish Pasture Grass N	utrient	
Composition		
	D	iet
Nutrient composition	G	G+RB
CP, % of DM	16.3	15.4
Starch, % of DM	2.2	14.4
WSC, % of DM	23.9	19.3
NFC, % of DM	37.7	43.5
aNDFom, % of DM	36.3	32.7
12-h uNDFom, % of aNDFom	50.9	-
30-h uNDFom, % of aNDFom	20.9	-
72-h uNDFom, % of aNDFom	-	-
120-h uNDFom, % of aNDFom	11.8	-
240-h uNDFom, % of aNDFom	9.9	-
Ether extract, % of DM	3.1	2.9
Ash, % of DM	6.6	5.6
	Din	een et al. 2020



High Forage vs High Byproduct Diet

- Forages can be scarce
- · High digestibility forages low in inventory
- How can we reformulate to increase intakes and improve milk components?
- Quick discussion of a high vs low forage study conducted to evaluate feed intake, milk yield, milk composition and rumination

Formulated Ex	periment	Formulated Experimental Diets								
Ingredient (pounds/head/day)	HUF	LUF	HUNF							
Alfalfa hay (high-uNDFom)	7.7	-	-							
Alfalfa silage (low-uNDFom)	-	18.5	7.3							
Alfalfa silage (high-uNDFom)	9.9	-	-							
BMR corn silage	-	23.4	-							
Conv. corn silage	24.3	-	9.5							
Citrus pulp	2.4	1.5	5.1							
Corn gluten feed	-	-	2.4							
Corn grain ground	8.8	10.1	14.6							
Cottonseed delinted	-	-	4.4							
Soybean hulls	1.1	-	3.3							
Soy Plus	4.0	5.1	3.5							
Sunflower seed hulls	-	-	4.0							
Wheat middlings	-	-	4.6							
Minerals and vitamins	2.9	2.0	2.2							

Exper	imental diets	6	
Chemical composition	HUF	LUF	HUNF
DM	46	41	63
CP, % DM	16.1	16	16.1
RUP, % DM	44.9	46.8	50
aNDFom, %DM	32.9	33.1	33.1
Fast pool, %aNDFom	31	67	55
Slow pool, %aNDFom	37	7	13
uNDFom, % aNDFom	32	26	32
Starch, %DM	24.4	24.7	25.1
Sugar, %DM	6	4.3	6.1
EE, % DM	4.0	4.2	4.4
ME, mcal/kg DM	2.48	2.49	2.45
ME allowable milk (lb/d)	96.56	96.78	98.77
MP allowable milk (lb/d)	103.40	105.38	106.26
Lys:Met	2.94	2.94	2.83

Results - base	ed o	n for	mula	ted	diets
Item	HUF	LUF	HUNF	SEM	P-value
DMI (Ib/cow/d)	61.1 ^a	61.3 ^a	70.8 ^b	1.01	0.0001
aNDFom intake, lb/d	20.1 ^a	20.2 ^a	23.4 ^b	0.24	0.0001
uNDFom intake, lb/d	6.4 ^a	5.2 ^b	7.4 ^c	0.09	0.0001
pdaNDFom intake, lb/d	13.7ª	15.0 ^b	16.0 ^c	0.19	0.0001
Fast pool intake, lb/d	6.3 ^a	13.4 ^b	12.8°	0.15	0.0001
Slow pool intake, lb/d	7.4 ^a	1.6 ^b	3.2 ^c	0.07	0.0001
aNDFom intake, %BW	1.30 ^a	1.30 ^a	1.48 ^b	0.02	0.0001
uNDF intake, %BW	0.42 ^a	0.34 ^b	0.48 ^c	0.01	0.0001
dNDF intake, %BW	0.89 ^a	0.98 ^b	1.01°	0.01	0.002

Item ¹	HUF	LUF	Sults	SEM	P-value
DMI (lb/cow/d)	61.1ª	61.3ª	70.8 ^b	1.01	0.0001
, Milk, (lb/d)	91.7 ª	96.3 ^b	105.5℃	1.06	0.0001
Energy corrected milk, (lb/d)	94.1 ª	96.8 ^b	100.1°	1.15	0.0001
Fat yield, (lb/d)	3.48 ^a	3.46 ª	3.31 ^b	0.05	0.0021
True protein yield , (lb/d)	2.67 ^a	2.84 ^b	3.20 ^c	0.05	0.0001
Fat, (%)	3.79 ^a	3.58 ^b	3.18 ^c	0.04	0.0001
True protein, (%)	2.91 ^a	2.95 ^a	3.05 ^b	0.01	0.0001
MUN mg/dl	11.7ª	8.8 ^b	10.4 ^a	0.12	0.0001
Feed efficiency (ECM/DMI)	1.55 ^a	1.58 ª	1.41 ^b	0.02	0.0001

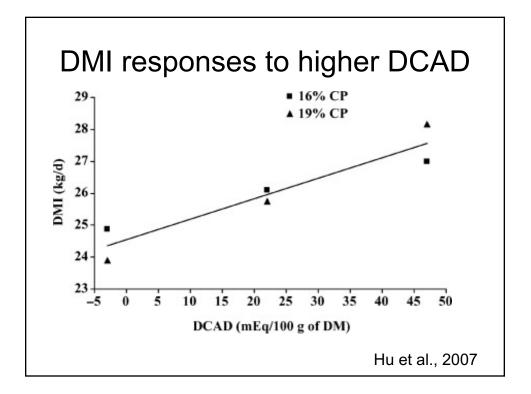
Chewing and rumination, body weight and BCS changes

ltem ¹	HUF	LUF	HUNF	SEM	P-value
BW initial, Ib	1,547	1,554	1,574	6.59	0.78
BW change, lb	7.1	20.5	39.2	9.17	0.08
BCS change	0.01	0.01	0.1	0.05	0.63
Rumination (min/cow/d)	593 ^a	609 ^a	534 ^b	7.25	0.0001
Rumination (min/lb NDF intake)	29.5 ^a	30.1ª	22.9 ^b	0.41	0.0001
Rumination (min/lb dNDF intake)	43.3ª	40.7 ^b	33.2 ^c	0.58	0.0001

DCAD Levels, DMI and Milk Protein

Table 2. Least squares means for DMI, BW, milk yield, 4% FCM, and milk composition in experimental diets combining 3 levels of DCAD with 2 levels of CP

	DCAD	$^{1} = -3$	DCAI	0 = 22	DCAI	0 = 47			Orthogo	nal cont	$rast^2$	
Variable	16% CP	19% CP	16% CP	19% CP	16% CP	19% CP	SE	Α	В	С	D	Е
DMI, kg/d	24.9	23.9	26.1	25.7	27.0	28.2	1.9	NS^3	< 0.01	NS	NS	NS
BW, kg Milk	678	675	680	677	682	678	12	NS	NS	NS	NS	NS
Yield, kg/d	35.3	36.7	36.4	35.8	36.1	36.6	2.3	NS	NS	NS	NS	NS
4% FCM, kg/d	31.1	30.3	32.4	33.1	33.9	34.5	2.7	NS	0.01	NS	NS	NS
Fat, %	3.12	2.85	3.27	3.46	3.57	3.62	0.50	NS	0.02	NS	NS	NS
Fat, kg/d	1.12	1.04	1.19	1.25	1.29	1.32	0.17	NS	0.01	NS	NS	NS
Protein, %	3.12	3.09	3.20	3.16	3.24	3.24	0.09	NS	< 0.01	NS	NS	NS
Protein, kg/d	1.10	1.11	1.15	1.11	1.15	1.18	0.07	NS	0.07	NS	NS	NS
Lactose, %	4.79	4.82	4.78	4.79	4.90	4.90	0.09	NS	0.03	0.05	NS	NS
Lactose, kg/d	1.69	1.76	1.74	1.72	1.78	1.80	0.12	NS	NS	NS	NS	NS
SNF, %	8.58	9.01	9.11	8.98	9.09	8.82	0.13	NS	< 0.01	NS	NS	NS
SNF, kg/d	3.18	3.21	3.22	3.17	3.27	3.31	0.21	NS	NS	NS	NS	NS
Urea, mg of N/dL	17.0	21.0	13.7	21.5	13.7	19.5	2.24	< 0.01	0.02	NS	NS	0.08
SCC, ×1,000/mL	46	34	37	36	38	31	19	NS	NS	NS	NS	NS

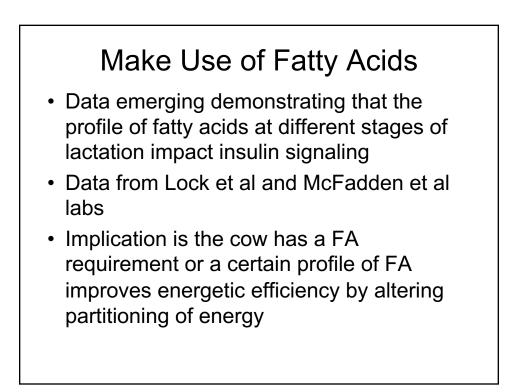

 $^1\mathrm{DCAD}$ in milliequivalents of (Na + K – Cl – S)/100 g of DM.

 $^{2}A = 16\%$ CP vs. 19% CP; B = linear effect of DCAD; C = quadratic effect of DCAD; D = interaction between CP concentration and linear effect of DCAD; E = interaction between CP concentration and quadratic effect of DCAD.

 3 NS = P > 0.10.

4% increase in milk protein with higher DCAD independent of CP level

Hu et al., JDS 2007



Protein and DCAD Effects on Milk Components

Table 3. Dry matter intake, milk yield, milk composition, and milk component yield for cows fed diets formulated to contain a DCAD of 25 or 50 mEq (Na + K – Cl)/100 g of DM and 15 or 17% CP

DMI DM, kg/d 26%	% increa % increa							DCAD × CF
DM, kg/10	0.0		0.0		0.00			NS
Milk	24.0	25.7	23.8	26.6	0.4	**	NS	NS
ECM ¹	20.5	23.4	20.6	24.1	0.4	**	NS	NS
Fat	0.60	0.76	0.61	0.77	0.01	**	NS	NS
Protein	0.70	0.76	0.71	0.79	0.01	**	NS	NS
Milk composition, 9	6							
Fat	2.44	2.95	2.44	2.89	0.03	**	NS	NS
Protein	2.89	2.94	2.99	2.98	0.01	*	**	**

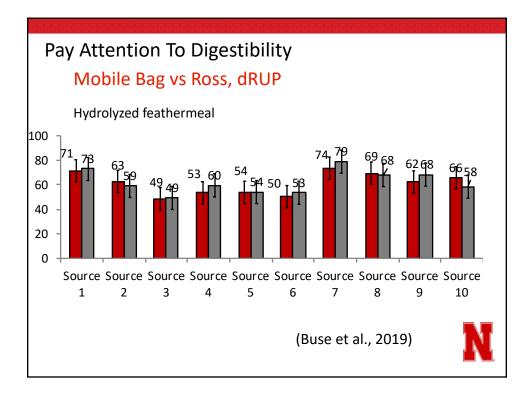
Wildman et al. JDS 2007

Altering the ratio of dietary C16:0 and cis-9 C18:1 impacts productivity

Table 2. Proportion of each fatty acid (FA) supplement for treatment blends and FA profile of FA blends

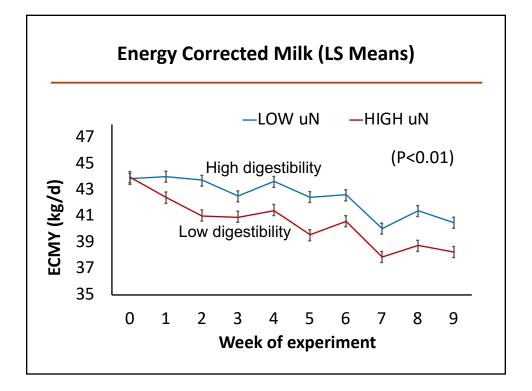
	Treatment ¹					
Item	80:10	73:17	66:24	60:30		
FA supplement in treatment blends, %						
C16:0-enriched FA supplement ²	89.0	66.5	45.5	29.0		
Ca salts of palm FA supplement ³	11.0	33.5	54.5	71.0		
FA profile of each FA blend, g/100 g of FA						
C14:0	0.67	0.75	0.82	0.88		
C16:0	80.7	73.6	66.3	59.7		
C18:0	1.83	1.79	1.75	1.70		
cis-9 C18:1	10.2	17.5	23.9	29.7		
cis-9, cis-12 C18:2	2.95	4.23	4.45	5.55		
cis-9, cis-12, cis-15 C18:3	0.11	0.15	0.19	0.23		

 $^180:10 = 1.5\%$ of FA supplement blend to provide ${\sim}80\%$ C16:0 and 10% cis-9 C18:1; 73:17 = 1.5% of FA supplement blend to provide ${\sim}73\%$ C16:0 and 17% cis-9 C18:1; 66:24 = 1.5% of FA supplement blend to provide ${\sim}66\%$ C16:0 and 24% cis-9 C18:1; 60:30 = 1.5% of FA supplement blend to provide ${\sim}60\%$ C16:0 and 30% cis-9 C18:1.

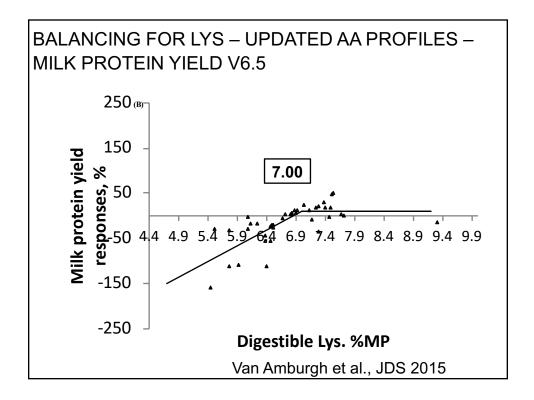

²Palmitic acid-enriched FA supplement (Nutracor; Wawasan Agrolipids, Johor, Malaysia). Contained (g/100 g of FA) 0.60 of C14:0, 84.5 of C16:0, 1.80 of C18:0, and 7.90 of *cis*-9 C18:1, and 98.8% total FA.

 3 Calcium salts of palm FA supplement (Nutracal; Wawasan Agrolipids). Contained (g/100 g of FA) 1.0 of C14:0, 48.1 of C16:0, 1.12 of C18:0, and 39.9 of cis-9 C18:1, and 83.4% total FA.

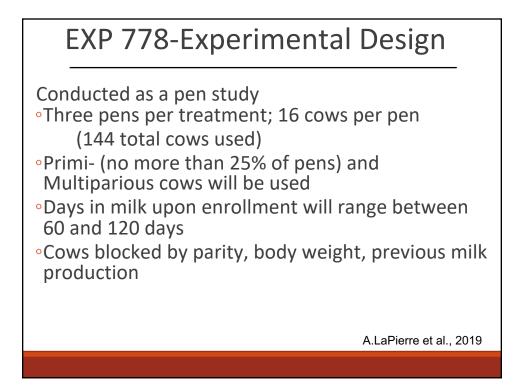
De Souza et al., 2019 JDS

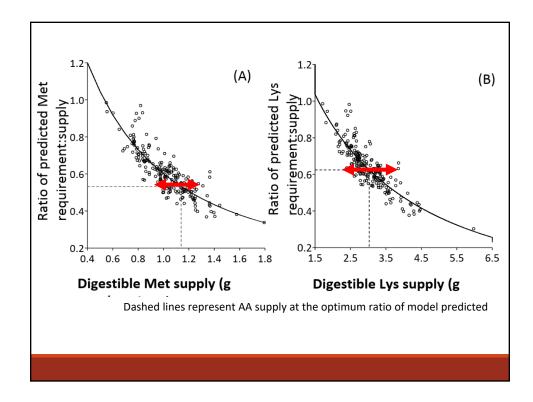

Item	$Treatment^1$				
	80:10	73:17	66:24	60:30	
Ingredient, % of DM					
Corn silage	25.5	25.5	25.5	25.5	
Alfalfa silage	16.3	16.3	16.3	16.3	
Wheat straw	5.32	5.32	5.32	5.32	
Ground corn	15.9	15.9	15.9	15.9	
High-moisture corn	14.2	14.2	14.2	14.2	
Soybean meal	12.1	12.1	12.1	12.1	
Soyhulls	4.82	4.76	4.70	4.65	
Protein supplement ²	1.09	1.09	1.09	1.09	
C16:0-enriched FA supplement ³	1.37	1.06	0.76	0.48	
Ca salts of palm FA supplement ⁴	0.17	0.54	0.90	1.23	
Mineral and vitamin mix ⁵	3.23	3.23	3.23	3.23	
Nutrient composition, ⁶ % of DM					
NDF	29.0	29.0	29.0	29.0	
CP	16.5	16.5	16.5	16.5	
Starch	28.8	28.8	28.8	28.8	
FA	4.00	3.98	4.00	3.98	
16:0	1.58	1.44	1.33	1.26	
18:0	0.05	0.04	0.04	0.04	
cis-9 18:1	0.68	0.78	0.88	0.98	
cis-9, cis-12 18:2	1.25	1.25	1.27	1.29	
cis-9, cis-12, cis-15 18:3	0.20	0.20	0.20	0.20	

Effect of	Ratic	o of F	Palm	itic to	o Ole	eic on	Produ	uctivity
Table 5. Milk yield,	milk com	position, I Treat		BCS of cov	vs fed the	treatment	diets $(n = 36)$ P-value ²	i)
5.6% incre			-				l about 1	.5:1
^E Suggests o	cows v	vere A	A limit	ting 3.48	0.09	0.04	0.27	0.47
Fat, % Protein, kg/d	$3.71 \\ 1.53$	1.58	1.58	1.62	0.05	0.07	< 0.01	0.03
Fat, % Protein, kg/d Protein, % Lactose, kg/d Lactose, %	$3.71 \\ 1.53 \\ 3.18 \\ 2.15 \\ 4.47$		$1.58 \\ 3.21 \\ 2.25 \\ 4.55$	$1.62 \\ 3.24 \\ 2.30 \\ 4.57$		$0.07 \\ 0.47 \\ 0.05 \\ 0.05$	$< 0.01 \\ 0.02 \\ < 0.01 \\ 0.05$	
Protein, kg/d Protein, % Lactose, kg/d	$ \begin{array}{r} 1.53 \\ 3.18 \\ 2.15 \end{array} $	$1.58 \\ 3.21 \\ 2.24$	$\frac{3.21}{2.25}$	$3.24 \\ 2.30$	$0.05 \\ 0.05 \\ 0.06$	$0.47 \\ 0.05$	$0.02 \\ < 0.01$	$ \begin{array}{c} 0.03 \\ 0.42 \\ 0.05 \end{array} $


	Treatment ¹		
ltem,	LOW uN	HIGH uN	
DM, % as fed	50.0	50.5	
CP, % DM	15.2	15.2	
NDF, % DM	31.9	32.3	
ADF, % DM	21.3	20.5	
EE, % DM	4.3	3.9	
Starch, % DM	30.4	31.2	
Sugar, % DM	3.6	3.3	
Ca, % DM	0.65	0.60	
P, % DM	0.43	0.43	
E*, Mcal/kg DM	1.8	1.7	
_ys:Met*, % MP	3.21	2.89	

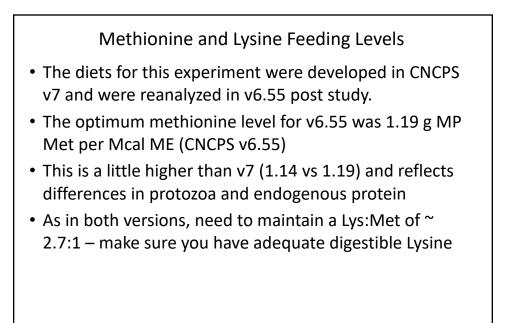
Г


Results						
ltem ¹	LOW uN	HIGH uN	SEM	P-value		
DMI, lb	60	60	1.34	0.75		
N Intake, g	671	664	14.8	0.77		
Milk production						
Milk, lb	93	89	0.68	<0.01		
ECM, lb	92	88	0.71	<0.01		
Fat, lb	3.33	3.13	0.04	<0.01		
Protein, lb	2.78	2.71	0.02	0.03		
Milk composition						
Fat, %	3.6	3.5	0.03	<0.03		
Protein, %	3.03	3.06	0.02	0.20		
Lactose, %	4.9	4.86	0.02	0.18		
MUN, mg/dl	9.4	8	0.18	<0.01		



Optimum Supply Of Each EAA Relative To Metabolizable Energy – CNCPS v7.0

AA	R ²	Efficiency from our evaluation	Lapierre et al. (2007)	g AA/ Mcal ME	% EAA
Arg	0.81	0.61	0.58	2.04	10.2%
His	0.84	0.77	0.76	0.91	4.5%
lle	0.74	0.67	0.67	2.16	10.8%
Leu	0.81	0.73	0.61	3.42	17.0%
Lys	0.75	0.67	0.69	3.03	15.1%
Met	0.79	0.57	0.66	1.14	5.7%
Phe	0.75	0.58	0.57	2.15	10.7%
Thr	0.75	0.59	0.66	2.14	10.7%
Trp	0.71	0.65	N/A	0.59	2.9%
Val	0.79	0.68	0.66	2.48	12.4%
	Lys and Met requ	uirements 14.9%	%, 5.1% - Schwat	o (1996) 2.9:1	
	Lys and Met requ	uirements 14.7%	%, 5.3% - Rulquin	n et al. (1993) 2	2.77:1


Diets			
Ingredient, % DM	Negative	Neutral	Positive
Corn silage	51.49	51.49	50.40
High moisture ear corn	9.43	9.46	9.93
Triticale	7.25	7.25	7.98
Corn grain	6.38	6.42	5.95
Soybean meal	8.16	5.55	2.72
Soybean hulls	9.25	3.84	2.83
SoyPLUS		0.91	3.59
Canola	1.81	9.17	6.31
Urea	0.62	0.51	0.51
Rumen Protected Met		0.04	0.05
Rumen Protected Lys			0.07
Blood meal			3.08
Energy Booster	0.73	0.73	0.91
Dextrose	1.63	1.63	2.18
Minerals and Vitamins	3.26	2.90	3.15

Chemical Component, % DM	Negative	Neutral	Positive		
Dry Matter, %	44.7	44.5	44.2		
Crude Protein	14.0	14.7	16.0		
ADICP, % CP	5.70	5.90	5.50		
NDICP, % CP	15.0	15.5	18.7		
aNDFom	32.4	31.0	31.4		
Lignin	2.61	3.00	2.70		
Sugar	3.95	4.10	3.90		
Starch	29.8	29.3	29.3		
Fat	3.50	3.60	3.80		
Ash	6.60	6.90	6.60		
NH3	0.80	0.90	0.80		
RUP, % CP	28.5	29.9	31.3		
ME Mcal/kg	2.58	2.60	2.61		
A.LaPierre et al., 2019					

EAA, grams	Negative	Neutral	Positive
Arginine	143.14	161.04	164.43
Histidine	62.78	70.42	83.81
Isoleucine	147.85	162.37	160.56
Leucine	229.92	253.31	286.27
Lysine	201.70	222.12	250.07
Methionine	71.44	78.30	92.67
Phenylalanine	153.00	164.71	181.63
Threonine	144.43	161.78	171.85
Tryptophan	45.92	48.93	44.66
Valine	161.01	179.55	197.46
		/	A.LaPierre et al., 2019

Negative	Neutral	Positive	SEM
60.4	62.2	62.8	0.6
82.7ª	88.4 ^{bx}	91.2 ^{by}	1.0
90.4ª	96.3 ^{bx}	99.4 ^{by}	1.2
2.56ª	2.78 ^b	2.84 ^b	0.02
3.39ª	3.53 ^{ab}	3.64 ^b	0.07
3.97 ^a	4.23 ^b	4.34 ^b	0.07
3.08ª	3.15 ^b	3.13 ^b	0.02
4.14	4.08	4.09	0.06
4.78	4.80	4.80	0.01
	60.4 82.7 ^a 90.4 ^a 2.56 ^a 3.39 ^a 3.97 ^a 3.08 ^a 4.14	60.4 62.2 82.7 ^a 88.4 ^{bx} 90.4 ^a 96.3 ^{bx} 2.56 ^a 2.78 ^b 3.39 ^a 3.53 ^{ab} 3.97 ^a 4.23 ^b 3.08 ^a 3.15 ^b 4.14 4.08	60.4 62.2 62.8 82.7 ^a 88.4 ^{bx} 91.2 ^{by} 90.4 ^a 96.3 ^{bx} 99.4 ^{by} 2.56 ^a 2.78 ^b 2.84 ^b 3.39 ^a 3.53 ^{ab} 3.64 ^b 3.97 ^a 4.23 ^b 4.34 ^b 4.14 4.08 4.09

A.LaPierre et al., 2019

Methionine and Lysine and Relative to Energy using CNCPS v6.55

60 Mcals ME, then (60 mcal*1.19 g/Mcal) = 71.4 g Met

The lysine requirement should be (7/2.6 = 2.7 x Met)

Therefore 2.7 (Lys:Met) *71.4 g = 193 g Lys

Always calculated Met first – what the gram/energy relationship was derived from

Then calculate lysine otherwise the ratio will provide incorrect values

