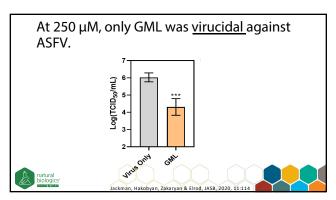
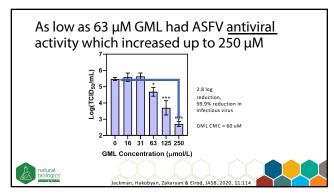
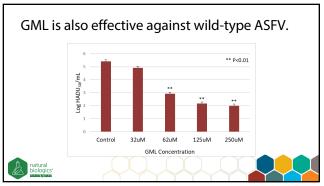
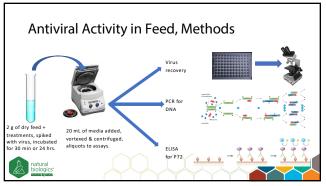
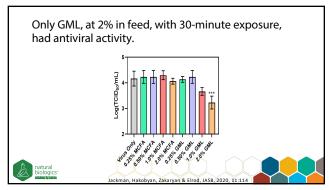

	view of MG)	Medium-Chain	Mon	ogly	/ceri	des	
Compound Name (Molecular Formula)		Chemical Structure	Mol. Wt. (Da)	Melt. Point (°C)	CMC (µM)	Smell	
	Monocaproin (C ₉ H ₁₈ O ₄)	ОН	190.2	19.4	N.D.	Minor	
cerides	Monocaprylin (C ₁₁ H ₂₂ O ₄)	OH OH	218.3	35.6	N.D.	Minor	
Monoglycerides	Monocaprin (C13H26O4)	ОН	246.3	51.4	600	Minor	
2	Monolaurin (C15H30O4)	0 ОН	274.4	62.5	60	Minor	
natui	gics*	Adapted from: Jackman, Bo	yd and Elro	d, JASB, 2	020		\ \

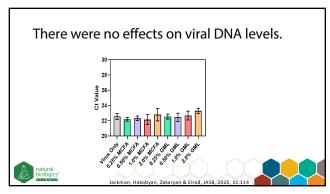


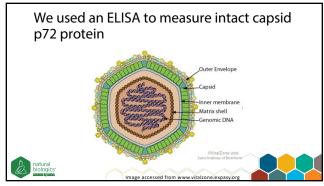


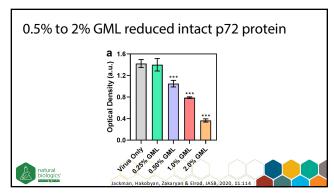

-

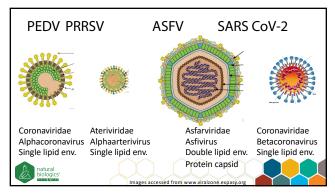


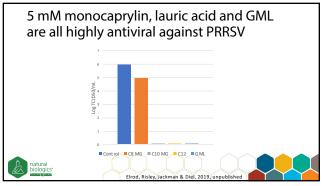

8

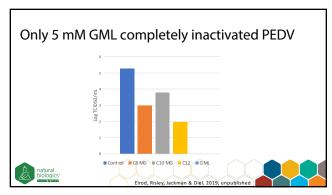


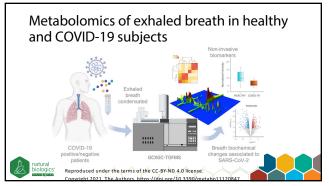












GML at 2 kg/ton of feed was effective at eliminating PRRS infection in Pipestone Challenge											
		Control	GML								
	% Positive Feed	100%	33%								
	% Positive Oral	100% (Ct=26.1)	17% (Ct=33.0)								
	% Positive Serum	100%	0%								
	% Positive Pens (clinical signs)	100%	0%								
	ADG (lbs.)	0.44	1.1								
natural biologics*		Data used with pe	rmission of Berg &	Schmidt							

Healthy subjects could be differentiated by the presence of GML and monomyristate • "...an abundance of EBC fatty acids can be used to discriminate COVID-19 patients and that they may have a protective effect, thus suggesting their potential use as a preventive strategy against the infection." Reproduced under the terms of the CC-BY-ND 4.0 license

22

Summary

- MCFA and GML had ASF virucidal activity at 5 mM
 - Resulting in 1.1 to 1.7 log reduction in viral load
- \bullet GML was active at 250 $\mu\text{M}\text{,}$ about 20x more potent
 - 2.8 log reduction in total antiviral activity

 - 1.7 log reduction attributable to virucidal activity
 1.1 log reduction presumably through another mechanism
 - Disruption of P72 protein may inhibit fusion with host cells

23

Summary

- In feed, only GML was active against ASFV at the inclusion
 - Resulting in a 0.94 log reduction @ 30 minutes when compared
- None of the treatments affected the presence of viral DNA in feed

Summary

- GML significantly disrupted the major capsid protein present in ASFV.
- This may explain why GML demonstrated activity beyond virucidal, perhaps interfering in fusion with or replication within host cells

25

Summary

- Monocaprylin, lauric acid and GML eliminated PRRSV in
- Only GML completely eliminated PEDV in vitro.
- GML significantly reduced PRRSV in feed, oral fluids and serum of pigs at 2 kg/ton of feed.
- GML eliminated clinical signs of PRRSV in virus-challenged pigs and improved ADG.

26

Conjecture

- \bullet GML and monomyristate (C14 monoglyceride) were present in breath of healthy subjects when compared to that of COVID-19 patients.
- SARS CoV-2, a lipid enveloped virus, would likely be susceptible to disruption by GML.
- Presence of GML in respiratory mucosa suggests circulation of this potent antimicrobial, antiviral and anti-inflammatory compound which may be protective.

- Acknowledgements

 - Dr. Joshua Jackman, Sungkyunkwan University
 Dr. Hovakim Zakaryan, Armenia National Academy of Science
 - Dr. Dean Boyd, Animal Nutrition Research
 - Dr. Diego Diel, Cornell University
 - Dr. Chad Risley, Berg & Schmidt
- Any omissions or mistakes are solely my own. You can let me know about them, or start a discussion about this work at: celrod@naturalbiologics.com

