# The Interaction of Genetics and Nutrition



## Setting the stage

- I'm a geneticist, not a nutritionist
- Goal for today is three-fold:
  - Share how the pig is changing over time
  - Focus on the traits and the biology, to provide an expectation
  - Demonstrate the speed of this change
- Objectives:
  - Using examples, demonstrate change is occurring
  - Stimulate thought and ideas

## Conclusions

- The rate of genetic change today, due to genomic selection, is 25-40% higher than it was 5 years ago
- This higher rate of genetic gain means that the management and nutrition program must change at a rate faster than we've ever done
- The nutrition of the sow is the hardest to research, and the area most lacking
- Grow-finish recommendations should be updated every 3 years

# How is the sow changing?





# **Biological Model**



#### Biological Model – Litter Size

- Live Pigs at Day 5:
  - Began in 2004
  - Increases litter size
  - Eliminates sows of high total born with poor survival
  - Reduces stillborn rate
  - 0.98 correlation to number weaned



# Su et al. (2007, JAS)

- Developed the concept of LP5
  - 7519 Landrace sows, 9310 litters, 22 farms
  - 5569 Yorkshire sows, 6861 litters, 21 farms
- Response to a decade of selection for total number born
  - +3 pig improvement in total born
  - Increasing pre-weaning mortality
  - Decreasing pig birth weight
  - Decreasing response in number weaned
- Objective to define an improved trait for number weaned

#### When do pigs die? Su et al. (2007)



# Why LP5? (Su et al. 2007)

| Landrace |      |      |                   | Yorkshire         |       |      |      |                   |                   |
|----------|------|------|-------------------|-------------------|-------|------|------|-------------------|-------------------|
| Trait    | TNB  | NBA  | LP5               | NW                | Trait | TNB  | NBA  | LP5               | NW                |
| TNB      | 0.07 | 0.6  | 0.34              | 0.29              | TNB   | 0.05 | 0.7  | 0.58              | 0.53              |
| NBA      |      | 0.08 | 0.75              | 0.72              | NBA   |      | 0.05 | 0.89              | 0.87              |
| LP5      |      |      | <mark>0.09</mark> | <mark>0.99</mark> | LP5   |      |      | <mark>0.07</mark> | <mark>0.99</mark> |
| NW       |      |      |                   | 0.09              | NW    |      |      |                   | 0.07              |

Heritabilities along diagonal, genetic correlation between traits off-diagonal

## LP5 and pre-weaning survival (Su et al. 2007)

| Breed     | Trait          | TNB   | NBA   | LP5   | NW    |
|-----------|----------------|-------|-------|-------|-------|
| Landrace  | Surv. at Birth | -0.28 | 0.61  | 0.56  | 0.58  |
|           | Surv. at day 5 | -0.26 | -0.54 | 0.58  | 0.61  |
|           | Surv. at Wean  | -0.43 | 0.03  | 0.32  | 0.40  |
| Yorkshire | Surv. at Birth | -0.38 | 0.41  | 0.43  | 0.46  |
|           | Surv. at day 5 | -0.07 | 0.35  | 0.71  | 0.76  |
|           | Surv. at Wean  | -0.52 | -0.36 | -0.08 | -0.03 |

# Biological Model – Pig Quality

- Pig Birth Weight:
  - Is a trait of the sow, not of the pig
  - Is increased by selecting sows that produce heavier pigs at birth
  - Is not increased by selecting pigs with high birthweight
  - Selection initiated July 2017, MBW
- Relation to LP5:
  - Favors sows with above average birth weight



# Why Birth Weight?

#### Yorkshire



Landrace

Move mean birth weight by 0.1 kg (0.2 lb) =  $\sim$ 5% improvement in PWM

## More about birth weight

|                 | Yorkshire                    | Landrace                     |  |  |
|-----------------|------------------------------|------------------------------|--|--|
| Total Born      | - <mark>0.028</mark> (0.001) | - <mark>0.027</mark> (0.001) |  |  |
| NBA             | -0.026 (0.001)               | -0.024 (0.001)               |  |  |
| Stillborn       | -0.030 (0.002)               | -0.021 (0.001)               |  |  |
| Live Pigs Day 5 | - <mark>0.007</mark> (0.001) | - <mark>0.010</mark> (0.001) |  |  |

Each additional total born reduces birth weight by 28/27 grams, LP5 by 7/10 grams.

# Impact of birth weight on growth

|                 | Yorkshi  | re   | Landrad  | e    | Duroc    |      |
|-----------------|----------|------|----------|------|----------|------|
|                 | Estimate | SE   | Estimate | SE   | Estimate | SE   |
| On-Test Weight  | 8.51     | 0.12 | 8.86     | 0.10 | 7.17     | 0.09 |
| Off-Test Weight | 15.64    | 0.36 | 18.31    | 0.27 | 15.20    | 0.27 |
| ADGn            | 110.05   | 1.66 | 113.14   | 1.31 | 93.34    | 1.24 |
| ADGf            | 83.17    | 3.29 | 111.12   | 2.54 | 96.83    | 2.59 |

#### 2019 Trend for Maternal Birth Weight



#### 2020 Trend for Maternal Birth Weight



#### Phenotypic Trend in LP5 and PWS



#### Biological Model – Maternal Environment



# Milking Ability

- We had to identify a trait that predicts a sow's ability to add weaning weight
- Data collection began in 2015:
  - Birth weight (began in 2014)
  - Foster date, from/to sow, foster weight
  - Mortality date and weight
  - Protocol to load sows to functional teat count + 1 pig
- Allowed calculation of pre-weaning growth rate for pigs a sow nursed

# Average Daily Gain Birth to Weaning

- Like birth weight, the important genetic component is the sow, not the growth potential of the pig
- Selection is for sows producing a higher daily gain to weaning for the pigs she is allowed to nurse

# Average Daily Gain Birth to Weaning

- Genetic change:
  - From 2019 to 2020 = +4 grams
  - From 2020 to 2021 = +5 grams
  - Change of +9 grams per day
- Over a 21-day lactation = +0.42 lb. wean weight

## Wean Weight Phenotypic Trends



#### **Commercial Trendline**

#### Trends:

- TNB = 0.25 pigs per year
- NBA = 0.21 pigs per year
- PWM = -0.55% per year
- GT/Sow Farrowed = 0.25 pigs per year
- Total wean weight = +36 lb. per sow per year

Sows have maintained weaning weight for an additional 1.5 pigs weaned

#### Implications for Sow Nutrition

- 1.5 additional pigs
  - Feeding for increased uterine capacity
  - Gestation requirements
  - Maintenance of body condition, while feeding the developing fetus
- Sows weaning (lactating) an additional 36 lbs. (16.3) kg per year
  - 6.8 kg per litter (2.4 litters per year)
  - Energy and protein requirements, feed intake
- Difficult to do research on sows with very few facilities available
- A robust, heavy and healthy pig is the starting point for success





## Maternal Line Selection Objective



#### Duroc Selection Objective (prior to August 2021)



#### **Predicted Response**

- Market pigs will have:
  - Increasing finishing feed intake over time
  - Higher finishing and nursery growth rate
  - Increasing carcass muscling
  - Level to slightly increasing backfat measures
- Key relationships are between growth, feed intake and efficiency

#### Finisher Trend Over Time



## Implications for Grow-Finish Nutrition

- Feed intake is increasing, but...
- At a proportionally slower rate than daily gain
- Feed efficiency will continue to improve at about 0.04 units
- Selection for a lean pig at a heavy market weight is:
  - Driving intake and efficiency in late finish
  - Likely pushing maturity further to the right...little decrease in daily gain
- There is approximately a 5% change in F:G and growth every 3-4 years

# Acceleration of Change



#### What is Genomic Selection?

- An improvement in the accuracy of choosing the 'right' parents
- Its about the relationships:
  - Without genomics, all littermates assumed to be 50% related
  - With genomics, at the DNA level, an accurate relationship is calculated
  - Theoretical range of 0-100%
  - Most full-sib animals fall between 30 and 70% related
- Relationships at the DNA level are also calculated across families
- Higher accuracy = better decisions = more genetic change

# Accelerating Trend (per market pig)



#### Implications of Genomic Selection

- The change in lowly-heritable and sex-limited traits can be up to 50% faster:
  - Live Pigs at Day 5
  - Maternal Birth Weight
  - Feed Intake
- The change in traits measured on all animals increases up to 25%
  - Growth Rate
  - Backfat
  - Loin Depth
- The pace of change must be equally met with changed in management and nutrition in order to extract the genetic potential

## Conclusions

- The rate of genetic change today, due to genomic selection, is 25-50% higher than it was 5 years ago
- This higher rate of genetic gain means that the management and nutrition program must change at a rate faster than we've ever done
- The nutrition of the sow is the hardest to research, and the area most lacking
- Grow-finish recommendations should be updated every 3 years, corresponding to a ~5% change in the trait values

# Questions?

