

What is all this about Microbiome and animals

HEALTHY GUT FLORA

A Di

- The microbiome is everywhere and can do everything

 According to the advertisers at least....
- The gut microbiome is more important than we realized
 - Impact efficiency, health, food safety, and carcass quality
 Microbial "organ", endocrinology
 Related to Health Outcomes

 - Wasteful Energy/N useFiber fermentation in hindgut

2

The g	ut microb	iome's role	in health
Immune	Brain function	Nutrient absorption and metabolism	Diseases, syndromes, and functional aberrations
Inflammation Autoimmunity immunomodulation	The gut-brain axis Mental health	Short chain fatty acids Insulin resistance and deficiency Energy capture	Type-1 and type-2 diabetes irritable bowel syndrome Atopic eczema Cardiovascular illnesses Leaky Gut

Visualizing eubiotic impacts

 Feeds and digesta are fermented to produce volatile fatty acids (VFA)
 – Gut health/integrity

 Immune function
 Ultimately must link specific microbiota with outcomes or at least metabolites of importance

 Conversion of lactate to propionate linked with improved RFI (efficiency)
 DFM increased lactate utilizers (Pitta, 2010)

Dysbiosis: disturbance in the force

- Dysbiosis is an imbalance or perturbation in the microbial population (rumen and hindgut)
 - Linked to performance and health issues

 - Change (good/bad) Opportunity (vulnerability; transition)
- · Acidosis and Laminitis Cyclic feeding, FI and FE, SARA, MFD
 - Culling decisions driver
- Leaky Gut Syndrome
 - Loss of productivity, inflammatory response
 - Pathogen entry to the animal
 - LPS from microbes, hindgut acidosis?
 - Does the microbiome mean anything?

_

_

10

11

Tools of the microbial trade

- How can we prevent dysbiosis and improve the efficiency of the microbial fermentation to the animal?

 - Probiotics, prebiotics (OS), postbiotics, cubiotics
 organic acids, natural botanicals (Grilli et al.; various)
 feed additives, ionophores, bacteriocins/phage
 diet changes (feeds with natural phytochemicals, citrus peel/pulp, copra) that
 act similarly to prebiotics on the microbial population
- How can we make the animal more efficient?
 - Using the microbial enzyme pool
 Using the microbes for health
- No silver bullet

Category	Definition/Description	Product types
Eubiotics	Feed additives that play an essential role in supporting	Organic Acids, Essential Oils, Probiotics, Probiotics, Postbiotics
	animal performance and animal welfare by supporting gut health	Phytochemicals
Probiotics	"living microorganisms which, when administered in adequate quantities, are beneficial to the health of the host"	Live bacterial, yeast or fungal cultures. Includes: Lactic acid bacteria, Bocilius, Aspergilius, lactate-utilizing bacteria
Prebiotics	Fermentable substrate not used by host animal	Oligosaccharides, Fructooligosaccharides, Maltooligoasscharides, inulin, smaller disaccharides, organic acids (e.g., gluconate), B-glucans
Postbiotics	Yeast or fungal products or products of their fermentation	Non-living Yeast or Fungal fermentation endproducts; includes cell wall products or fermentation end products
Synbiotics	Feed additives that work synergistically through multiple modes of action	Probiotic coupled with a prebiotic, or a yeast product that contains prebiotics
Phytochemicals	Plant based compounds with activity (e.g., antimicrobial or anti- inflammatory) in the gut or in the host, also termed "natural botanicals" or "nutraceuticals"	Garlic oils, wintergreen, asparagus, dandelion greens, chicory

Microbial Impactors

To antagonism

* 80

- Production of acids
 VFA and low pH
- Production of inhibitory compounds

 Bacteriocins/colicins (proteins), antibiotics
- Competition for nutrients
 Limiting nutrients, affinity for nutrients
 "competitive exclusion"
- Competition for binding spaces physically
 Mucosa surface, crypts, tight junctions (gut integrity)
- Stimulation of host immune system
- Regulation of inflammationCombination of any of these

One theory of action

- Enhancement of indigenous Selenomonas Enhancement of indigenous *Selenomonas* and/or *Megasphaera* populations
 Purified malate reduced methane, lactate concentrations, A:P ratio and increased pH in cattle and in vitro (Martin, 1990; 1992)
 Alternative reducing equivalent sink (CH4 drop)
 Feeding malate to cattle improved FE and ADG (Streeter and Martin, 1993)
- Some eubiotics contain malate or fumarate
- Stimulation of uptake of lactate increases pH and reduces SARA
- Effects of dicarboxylic acid were similar to monensin and complementary

Prabhu, Altman, Eiteman, 2012

Conclusions

- Eubiotic approaches have a bright future and many routes of action
- Impacts production efficiency, carcass quality, milk quality, milk quantity, food safety, & animal health Very diverse activity spectrum and choices
- Decision fatigue; contradictory information Indigenous versus endogenous benefits
- We must understand the activities, populations and niches (and pops) of microbes to determine "good/bad" microbiome to select best eubiotic
- Sustainability and Efficiency = win/win Quality and quantity....goals matter Microbial interactions matter

1

25

