Albion Laboratories, Inc a Balchem Company

Catalogue number: 07325

Version No: 4.8

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **08/06/2020** Print Date: **09/06/2020** S.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	Metalosate Zinc Plus
Synonyms	Not Available
Other means of identification	07325

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Albion Laboratories, Inc a Balchem Company
Address	67 South Main Street, Layton, Utah 84041 USA United States
Website	www.AlbionMinerals.com
Email	SDS@Balchem.com

Emergency phone number

Association / Organisation	Chemtrec # 2275
Emergency telephone numbers	+1 800-424-9300 (USA)
Other emergency telephone numbers	+1 703-527-3887 (International)

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Skin Corrosion/Irritation Category 1B, Specific target organ toxicity - repeated exposure Category 2, Serious Eye Damage Category 1, Acute Toxicity (Oral) Category 4, Reproductive Toxicity Category 1B, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 1, Acute Aquatic Hazard Category 2

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

H314	Causes severe skin burns and eye damage.
H373	May cause damage to organs through prolonged or repeated exposure. (Oral)
H302	Harmful if swallowed.
H360	May damage fertility or the unborn child.
H317	May cause an allergic skin reaction.
H410	Very toxic to aquatic life with long lasting effects.
H401	Toxic to aquatic life.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	F ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	IF exposed or concerned: Get medical advice/attention.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P321	Specific treatment (see advice on this label).	
P363	Wash contaminated clothing before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P391	Collect spillage.	
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	1-10	Manganese Sulfate
Not Available	1-10	Magnesium Sulfate
Not Available	5-15	Zinc Sulfate
Not Available	1-10	Ferrous Sulfate
Not Available	1-10	Copper Sulfate

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST-AID MEASURES

Description of first aid measures	
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.

Metalosate Zinc Plus

If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary ► Transport to hospital, or doctor, without delay. ▶ For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

for copper intoxication:

- ▶ Unless extensive vomiting has occurred empty the stomach by lavage with water, milk, sodium bicarbonate solution or a 0.1% solution of potassium ferrocyanide (the resulting copper ferrocyanide is insoluble).
- ▶ Administer egg white and other demulcents.
- ▶ Maintain electrolyte and fluid balances.
- Morphine or meperidine (Demerol) may be necessary for control of pain.
- If symptoms persist or intensify (especially circulatory collapse or cerebral disturbances, try BAL intramuscularly or penicillamine in accordance with the supplier's recommendations
- ▶ Treat shock vigorously with blood transfusions and perhaps vasopressor amines.
- Fig intravascular haemolysis becomes evident protect the kidneys by maintaining a diuresis with mannitol and perhaps by alkalinising the urine with sodium bicarbonate.
- It is unlikely that methylene blue would be effective against the occassional methaemoglobinemia and it might exacerbate the subsequent haemolytic episode
- Institute measures for impending renal and hepatic failure.

[GOSSELIN, SMITH & HODGE: Commercial Toxicology of Commercial Products]

- ▶ A role for activated charcoals for emesis is, as yet, unproven.
- ▶ In severe poisoning CaNa2EDTA has been proposed.

[ELLENHORN & BARCELOUX: Medical Toxicology]

For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- ▶ Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- ▶ Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute manganese exposure. Treatment is supportive.

[Ellenhorn and Barceloux: Medical Toxicology]

In clinical trials with miners exposed to manganese-containing dusts, L-dopa relieved extrapyramidal symptoms of both hypo kinetic and dystonic patients. For short periods of time symptoms could also be controlled with scopolamine and amphetamine. BAL and calcium EDTA prove ineffective.

[Gosselin et al: Clinical Toxicology of Commercial Products.]

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider

- Foam.
- ▶ dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.

Metalosate Zinc Plus

	 DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 ▶ The material is not readily combustible under normal conditions. ▶ However, it will break down under fire conditions and the organic component may burn. ▶ Not considered to be a significant fire risk. ▶ Heat may cause expansion or decomposition with violent rupture of containers. ▶ Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) hydrogen cyanide nitrogen oxides (NOx) sulfur oxides (SOx) sulfur oxides (SOx) sulfur dioxide (SO2) metal oxides other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Environmental hazard - contain spillage. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling ► Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. Prevent concentration in hollows and sumps. ► DO NOT enter confined spaces until atmosphere has been checked. ▶ DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Safe handling Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. ${\color{red} \blacktriangleright} \ \ \text{Work clothes should be laundered separately. Launder contaminated clothing before re-use.}$ Use good occupational work practice. $\blacksquare \ \, \text{Observe manufacturer's storage and handling recommendations contained within this SDS}. \\$ • Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. $\,\blacktriangleright\,$ DO NOT allow clothing wet with material to stay in contact with skin Other information

Suitable container

Storage incompatibility

- ▶ Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Inorganic derivative of Group 11 metal.

It is suggested that crystalline proteins are explosive as evidenced by the easily induced shattering of microcrystals. This may be a consequence of the implosive collapse of a metastable ordering of molecules (Bretherick's Handbook of Reactive Chemical Hazards).

A study was performed to obtain quantitative data on the nature and yields of oxidation products formed by a prototypic oxidant system (HO•/O2) on small peptides, including Val-Gly-Val-Ala-Pro-Gly. Study results indicated that hydroperoxide formation occurred nonrandomly (Pro > Val > Ala > Gly) and that the formation of hydroperoxide was inversely related to carbonyl yields (both peptide-bound and released). Multiple alcohols were generated at both side-chain and backbone sites. Summation of the product concentrations provided clear evidence for the occurrence of chain reactions in peptides exposed to HO•/O2, with the overall product yields exceeding that of the initial HO• generated.

- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- ► The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides

Copper sulfate:

- reacts violently with strong bases, hydroxylamine.(with ignition), magnesium (producing hydrogen gas)
- ▶ in contact with potassium chlorate is potentially explosive
- solutions are acidic and can react with metals to evolve flammable hydrogen gas. corrosive to some metals including steel.
- is incompatible with sulfuric acid, caustics, ammonia, aliphatic amines, alkanolamines, amides, alkylene oxides, epichlorohydrin, organic anhydrides, isocyanates, vinyl acetate
- dusts or mists may react with acetylene to form shock-sensitive copper acetylides
- Avoid strong bases.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
Metalosate Zinc Plus	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
Metalosate Zinc Plus	Not Available		Not Available	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases

with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- ▶ Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Elbow length PVC gloves
- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- ► Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Metalosate Zinc Plus

Material	СРІ
BUTYL	A
NEOPRENE	A
VITON	A
NATURAL RUBBER	С
NITRILE	С
PVA	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1	-
up to 50	1000	-	A-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	A-2
up to 100	10000	-	A-3
100+			Airline**

- * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
- Cartridge respirators should never be used for emergency ingress or in areas
 of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	dark brown liquid		
Physical state	Liquid	Relative density (Water = 1)	1.1-1.22
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	2	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	4.0-5.0
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Page 8 of 13

Version No: 4.8

Metalosate Zinc Plus

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs, The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Not normally a hazard due to non-volatile nature of product

The material has NOT been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence.

Manganese fume is toxic and produces nervous system effects characterised by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur. A chemical pneumonia may also result from frequent exposure. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Inhaled

Copper poisoning following exposure to copper dusts and fume may result in headache, cold sweat and weak pulse. Capillary, kidney, liver and brain damage are the longer term manifestations of such poisoning. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in 'metal fume fever'; also known as 'brass chills', an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas.

The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.

There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Magnesium salts are generally absorbed so slowly that swallowing these cause few toxic effects, with purging being the most significant. If it cannot be removed (for example in bowel obstruction or paralysis), it may irritate the gut lining and be absorbed into the body. Side effects of magnesium salts include upset stomach, dry mouth, dry nose, dry throat, drowsiness, nausea, heartburn, and thickening of the lining of the throat and nose.

The magnesium ion causes salt disturbances, central nervous system depression, involvement of the heart, loss of reflexes and death from paralysis of breathing; these effects, however, are rare without pre-existing kidney or bowel disorders.

Early signs and symptoms of magnesium poisoning include nausea, vomiting, general unwellness and confusion. There may be low blood pressure due to dilation of blood vessels. A slow heart beat is common, which may eventually lead to stoppage of the heart. Sulfates are not well absorbed orally, but can cause diarrhoea.

Ingestion

The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence.

A metallic taste, nausea, vomiting and burning feeling in the upper stomach region occur after ingestion of copper and its derivatives. The vomitus is usually green/blue and discolours contaminated skin.

Poisonings rarely occur after oral administration of manganese salts because they are poorly absorbed from the gut.

Ingestion or skin absorption of boric acid causes nausea, abdominal pain, diarrhoea and profuse vomiting which may be blood stained, headache, weakness, reddened lesions on the skin. In severe cases, it may cause shock, with fall in blood pressure, increase in heart rate, blue skin colour, brain and nervous irritation, reduced urine volume or even absence of urine.

Borate poisoning causes nausea, vomiting, diarrhoea and pain in the upper abdomen. Often persistent vomiting occurs, and there may be blood in the faeces.

Skin Contact

The material can produce severe chemical burns following direct contact with the skin.

There is strong evidence to suggest that this material, on a single contact with skin, can cause very serious, irreversible damage of organs. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Boric acid is not absorbed via intact skin but absorbed on broken or inflamed skin.

Exposure to copper, by skin, has come from its use in pigments, ointments, ornaments, jewellery, dental amalgams and IUDs (intra-uterine devices), and in killing fungi and algae. Although copper is used in the treatment of water in swimming pools and reservoirs, there are no reports of toxicity from these applications.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage.

Copper salts, in contact with the eye, may produce inflammation of the conjunctiva, or even ulceration and cloudiness of the cornea.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material.

In a case of chronic abuse of magnesium citrate, symptoms seen included tiredness and severe low blood pressure which did not respond to treatment. Blood tests revealed extremely high levels of magnesium, and the patient was found to have a perforated ulcer of the duodenum. Kidney failure and death followed.

Chronic

A patient with normal kidney function developed stoppage of breathing and slow heart rate after receiving 90 grams of magnesium sulfate over 18 hours. Animal testing suggests that magnesium sulfate may reduce both fertility and the weight of offspring.

Dusts produced by proteins can sometimes sensitise workers like other foreign bodies. Symptoms include asthma appearing soon after exposure, with wheezing, narrowing of the airways and breathing difficulties.

For copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. Animal testing shows that skin in exposure to copper may lead to hardness of the skin, scar formation, exudation and reddish changes. Inflammation, irritation and injury of the skin were noted. Repeat dose toxicity: Animal testing shows that very high levels of copper monochloride may cause anaemia.

Genetic toxicity: Copper monochloride does not appear to cause mutations in vivo, although chromosomal aberrations were seen at very high concentrations in vitro

Cancer-causing potential: There was insufficient information to evaluate the cancer-causing activity of copper monochloride.

Catalogue number: 07325 Page 9 of 13

Version No: 4.8

Metalosate Zinc Plus

Manganese is an essential trace element. Chronic exposure to low levels of manganese can include a mask-like facial expression, spastic gait, tremors, slurred speech, disordered muscle tone, fatigue, anorexia, loss of strength and energy, apathy and poor concentration. Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk.

Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in 'metal fume fever'; also known as 'brass chills', an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas.

Chronic boric acid poisoning is characterized by mild gastrointestinal irritation, loss of appetite, disturbed digestion, nausea, possibly vomiting and a hard irregular and discoloured rash. Dryness of skin, reddening of tongue, loss of hair, inflammation of conjunctiva, and kidney injury have also been reported.

Borate can accumulate in the testes and deplete germ cells and cause withering of the testicles, according to animal testing. Hair loss, skin inflammation, stomach ulcer and anaemia can all occur.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Metalosate Zinc Plus

TOXICITY	IRRITATION
Not Available	Not Available

Leaend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Metalosate Zinc Plus

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For copper sulfate

Copper sulfate is corrosive. Side effects are diverse and multi-systemic, and include severe gastrointestinal symptoms and signs, metallic taste in the mouth, burning pain in the chest, headache, sweating, shock and damage to brain, liver and kidneys. It has been reported as a cause of human suicide. On exposure, it can cause dose dependent damage to the skin and eye, also, eczema and allergic reactions. Long term effects can lead to anaemia and degenerative changes and are more likely in individuals with Wilson's disease, a condition which causes excessive absorption and storage of copper. It has adverse effects on reproduction and fertility as well as cancer and embryo toxic effects. Although it is excreted in the faeces, there is residual accumulation the liver, brain, heart, kidney and muscles.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Metalosate Zinc Plus	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	EC50	48	Crustacea Mysids	7.7mg/L	8
Lamanda	First and and from 10 11 10 11	D. Tarriaita Data O. Franca FOLIA Daniata and C			init of EDUATING Contra

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Copper Sulfate:

Terrestrial Fate: Soil - If released to soil, copper sulfate may leach to groundwater and may partially oxidize or bind to humic materials, clay or hydrous oxides of iron and manganese. Since copper is an element, it will persist indefinitely. Copper is bound or adsorbed, to organic materials, and to clay and mineral surfaces. The degree of adsorption to soils depends on the acidity or alkalinity of the soil. Copper sulfate is one of the more mobile metals in soil; however, its leaching potential is low in all but sandy soils. When applied with irrigation water, copper sulfate does not accumulate in the surrounding soils; however, some 60% is deposited in the sediments at the bottom of the irrigation ditch, where it becomes adsorbed to clay, mineral, and organic particles. Copper compounds also settle out of solution. Plants - Copper sulfate is toxic to plants and kills by photosynthesis disruption. Blue-green algae have been shown to become increasingly resistant to the algaecide after 26 years of use.

Aquatic Fate: In water, copper sulfate will bind to carbonates as well as humic materials, clay and hydrous oxides of iron and manganese. As an element, copper can persist

Ecotoxicity: Copper is accumulated by plants and animals, but, it does not appear to biomagnify from plants to animals. Copper sulphate is practically non-toxic to birds and poses less

Metalosate Zinc Plus

of a threat to birds than to other animals. Copper sulfate is highly toxic to fish and Daphnia magna water fleas. Even at recommended rates of application, this material may be poisonous to trout and other fish, especially in soft or acid waters. Its toxicity to fish generally decreases as water hardness increases. Fish eggs are more resistant than young fish fry to the toxic effects of copper sulfate. Copper sulfate is toxic to aquatic invertebrates, such as crab, shrimp, and oysters. Higher concentrations of the material caused some behavioral changes, such as secretion of mucous, and discharge of eggs and embryos. Bees are endangered by Bordeaux mixtures of copper(II) sulfate and hydrated lime. Copper sulfate may be poisonous to sheep and chickens at normal application rates. Most animal life in soil, including large earthworms, have been eliminated by the extensive use of copper containing fungicides in orchards.

for magnesium compounds in general:

Fish LC50: 100-400 mg/l

For copper

Atmospheric Fate - Copper is unlikely to accumulate in the atmosphere due to a short residence time for airborne copper aerosols. Airborne coppers, however, may be transported over large distances. Air Quality Standards: no data available.

Aquatic Fate: Toxicity of copper is affected by pH and hardness of water. Total copper is rarely useful as a predictor of toxicity. In natural sea water, more than 98% of copper is organically bound and in river waters a high percentage is often organically bound, but the actual percentage depends on the river water and its pH.

Ecotoxicity: Copper accumulates significantly in the food chain. The toxic effect of copper in the aquatic biota depends on the bio-availability of copper in water which, in turn, depends on its physico-chemical form (i.e. speciation). Bioavailability is decreased by complexation and adsorption of copper by natural organic matter, iron and manganese hydrated oxides, and chelating agents excreted by algae and other aquatic organisms. Copper exhibits significant toxicity in some aquatic organisms. Some algal species are very sensitive to copper. Silicate, iron, manganese and EDTA may reduce bioavailability.

For copper: Ecotoxicity - Significant effects are expected on various species of microalgae, some species of macroalgae, and a range of invertebrates, including crustaceans, gastropods and sea urchins. Copper is moderately toxic to crab and their larvae and is highly toxic to gastropods (mollusks, including oysters, mussels and clams). In fish, the acute lethal concentrations of copper depends both on test species and exposure conditions. Waters with high concentrations of copper can have significant effects on diatoms and sensitive invertebrates, notably cladocerans (water fleas). Most taxonomic groups of macroalgae and invertebrates will be severely affected.

For Inorganic Sulfate:

Environmental Fate - Sulfates can produce a laxative effect at concentrations of 1000 - 1200 mg/liter, but no increase in diarrhea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed.

Atmospheric Fate: Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) which contribute to the removal of sulfate from the atmosphere.

Terrestrial Fate: Soil - In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Plants - Sodium sulfate is not very toxic to terrestrial plants however; sulfates can be taken up by plants and be incorporated into the parenchyma of the plant. Some plants (e.g. corn and Kochia Scoparia) are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants. Jack pine are the most sensitive plant species.

Aquatic Fate: Sulfate in water can also be reduced by sulfate bacteria (Thiobacilli) which use them as a source of energy. In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfate by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur. Sodium sulfate is not reactive in aqueous solution at room temperature. Sodium sulfate will completely dissolve, ionize and distribute across the entire planetary 'aquasphere'. Some sulfates may eventually be deposited with the majority of sulfates participating in the sulfur cycle in which natural and industrial sodium sulfates are not distinguishable.

Ecotoxicity: Significant bioconcentration or bioaccumulation is not expected. Algae are the most sensitive to sodium sulfate and toxicity occurs in bacteria from 2500mg/L. Sulfates are not acutely toxic to fish or invertebrates. Daphnia magna water fleas and fathead minnow appear to be the least sensitive species. Activated sludge showed a very low sensitivity to sodium sulfate. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. No data were found for long term toxicity. For Copper: Typical foliar levels of copper are: Uncontaminated soils (0.3-250 mg/kg); Contaminated soils (150-450 mg/kg); Mining/smelting soils (6.1-25 mg/kg80 mg/kg300 mg/kg). Terrestrial Fate: Plants - Generally, vegetation reflects soil copper levels in its foliage. This is dependent upon the bioavailability of copper and the physiological requirements of species concerned. Crops are often more sensitive to copper than the native flora. Soil: In soil, copper levels are raised by application of fertilizer, fungicides, from deposition of highway dusts and from urban, mining and industrial sources. Chronic and or acute effects on sensitive species occur as a result of human activities such as copper fertilizer addition and addition of sludge. When soil levels exceed 150 mg Cu/kg, native and agricultural species show chronic effects. Soils in the range 500-1000 mg Cu/kg act in a strongly selective fashion allowing the survival of only copper-tolerant species and strains. At 2000 Cu mg/kg, most species cannot survive. By 3500 mg Cu/kg, areas are largely devoid of vegetation cover. The organic content of the soil appears to be a key factor affecting the bioavailability of copper. On normal forest soils, non-rooted plants such as mosses and lichens show higher copper concentrations. The fruiting bodies and mycorrhizal sheaths of soil fungi associated with higher plants in forests often accumulate copper to much higher levels than plants at the same site.

for Boron and Borates:

Environmental Fate - Boron is generally found in nature bound to oxygen and is never found as the free element. As an element, boron itself cannot be degraded in the environment, however; it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water.

Atmospheric Fate: Atmospheric boron may be in the form of particulate matter or aerosols as borides, boron oxides, borates, organoboron compounds, trihalide boron compounds, or borazines. Boron and borates will probably be removed from the atmosphere by precipitation and dry deposition. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions.

Aquatic Fate: Borates are relatively soluble in water. Boron readily hydrolyses in water and, in concentrated solutions, may polymerize. The mineral content of water is not likely to control the fate of boron in water. Boron was found to not be significantly removed during the conventional treatment of waste water. Boron may, however; be co-precipitated with aluminium, silicon, or iron to form hydroxyborate compounds on the surfaces of minerals. Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water.

Terrestrial Fate: Soil - Boron is added to farmland as a soil improving agent, but there is not sufficient data to evaluate its effect on soil organisms. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. The single most important property of soil that will influence the mobility of boron is the abundance of amorphous aluminium oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil, however; borates can exist in a variety of forms in soil. Borates are removed from soils by water leaching and by assimilation by plants. Surface soil, unpolluted waterways and seawater all typically contain significant amounts of boron as borate. Plants - Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants.

Ecotoxicity: It is unlikely that boron is bioconcentrated significantly by organisms from water. Boron is not expected to bioaccumulate and bioconcentration factors for fish, plants and invertebrates are low. Boron is not regarded to be dangerous to aquatic organisms. In aquatic environments low concentrations of borates generally promote the growth of algae, whereas higher concentrations inhibited algal growth. Boron has little effect on freshwater algae and water fleas. The toxicity of boron in fish is often higher in soft water than in hard water. Zebra fish and rainbow trout are the most sensitive species to the effects of boron.

For Manganese and its Compounds:

Environmental Fate: Manganese is a naturally occurring element in the environment occurring as a result of weathering of geological material. It also occurs from its use in steel manufacture/ coal mining. The most commonly occurring of 11 possible oxidation states are +2, (e.g. manganese chloride or sulfate), +4, (e.g. manganese dioxide), and +7 (e.g. potassium permanganate), although the latter is unstable in the environment.

Atmospheric Fate: Elemental/inorganic manganese compounds may exist in air as suspended particulates from industrial emissions or soil erosion. Manganese-containing particles are mainly removed from the atmosphere by gravitational settling - large particles tend to fall out faster than small particles. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Some removal by washout mechanisms such as rain may also occur, although it is of minor significance in comparison to dry deposition.

Terrestrial Fate: Manganese in soil can migrate as particulate matter to air or water and soluble manganese compounds can be leached from the soil. High soil pH reduces manganese availability while low soil pH will increase availability, even to the point of toxicity. Soils high in organic matter *\text{e} tie up *\text{manganese}\$ manganese such that high organic matter soils can be manganese deficient. Fertilization with materials containing chlorine, nitrate, and/or sulfate, can also enhance manganese uptake, (termed the anion effect). Adsorption of soluble manganese to soil/sediments increases as positive ions increase, (cation), and organic matter increases. In some cases, adsorption of manganese to soils may not be a readily reversible process. At low concentrations, manganese may be fixed by clays and will not be released into solution readily. Bacteria and microflora can increase the mobility of manganese.

Aquatic Fate: Most manganese salts, with the exception of phosphates, carbonates, and oxides, are soluble in water. Solubility is controlled by the precipitation of insoluble forms, (species). In most oxygenated waters, the most common form is insoluble manganese oxide. Manganese chloride is the dominant form at pH 4-7, but may oxidize at pH>8 or 9. Ecotoxicity: While lower organisms, (plankton, aquatic plants, and some fish), can significantly bioconcentrate manganese, higher organisms, (including humans), tend to maintain

Catalogue number: 07325 Page 11 of 13

Version No: 4.8

Metalosate Zinc Plus

manganese balance. Manganese in water may be significantly concentrated at lower levels of the food chain.

Uptake of manganese by aquatic invertebrates and fish increases with temperature and decreases with pH. Fish and crustaceans appear to be the most sensitive to acute and chronic exposures. The substance has low toxicity to trout but, is moderately toxic to Coho salmon. The substance is toxic to Daphnia water fleas and moderately toxic to freshwater algae Pseudomonas putida and Photobacterium phosphoreum bacteria.

Proteins are generally easily biodegradable.

For Zinc and its Compounds: BCF: 4 to 24,000

Environmental Fate: Zinc is capable of forming complexes with a variety of organic and inorganic groups and is an essential nutrient present in all organisms.

Atmospheric Fate: Zinc concentrations in the air are relatively low, except near industrial sources, such as smelters. There is no estimate for the atmospheric lifetime of zinc, but, since zinc is transported long distances in air, its lifetime in air is at least on the order of days. Zinc is removed from the air by dry/wet deposition.

Terrestrial Fate: Soil ♦ Zinc may magnify in the soil if concentrations of the substance exceed 1632 ppm. The relative mobility of zinc in soil is determined by the same factors that affect its transport in aquatic systems, (i.e. solubility of the compound, pH, and salinity). The mobility of zinc in soil increases at lower soil pH, under oxidizing conditions, and at lower cation, (positive ion), exchange capacities. However, the amount of zinc in solution generally increases @ pH > 7, in soils high in organic matter. Clay and metal oxides sorb zinc and tend to retard its mobility in soil. Zinc is more mobile at pH 4 than at pH 6.5 as a consequence of sorption. Under low oxygen conditions, zinc sulfide is the controlling species, which has low mobility. Plants - Zinc is not expected to concentrate in plants, however, this depends on plant species, soil pH, and soil composition.

Aquatic Fate: Zinc readily adsorbs to sediment and suspended particles. The substance can persist in water indefinitely and can be toxic to aquatic life. Hydrous iron, manganese oxides, clay minerals, and organic material may help remove zinc from sediment since they adsorb the substance. Environmental toxicity of zinc in water is dependent upon the concentration of other minerals and the pH of the solution. Zinc remains as the free ion at lower pH levels. At high pH levels, zinc in solution is precipitated as zinc hydroxide, zinc carbonate, or calcium zincate.

Ecotoxicity: Zinc concentrates moderately in aquatic organisms; concentration is higher in crustaceans and bivalve species than in fish. Zinc is not expected to magnify as it moves up the land-based food chain. Zinc can concentrate over 200,000 times in oysters. Copper can increase toxicity to fish and calcium can decrease toxicity. Zinc can accumulate in freshwater species at 5 -1,130 times the concentration present in the water. Crustaceans and fish accumulate zinc from water and food. The substance has been found in very high concentration in aquatic invertebrates. Sediment dwelling organisms have higher zinc concentrations than those living in the aqueous layer. Overexposures to zinc also have been associated with toxic effects in mammals, including man. Ingestion of zinc or zinc-containing compounds has resulted in a variety of effects in the gastrointestinal tract and blood in humans and animals. The substance may cause lesions in the liver, pancreas, and kidneys.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction ▶
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

CECTION OF THE THE ON TECCHIE	
Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	
Reproductive toxicity	
Skin Corrosion or Irritation	
Respiratory or Skin Sensitization	
Serious eye damage or eye irritation	
Specific target organ toxicity (single or repeated exposure)	
Aspiration Hazard	
Germ cell mutagenicity	
Simple Asphyxiant	
Hazards Not Otherwise Classified	
	· · · · · · · · · · · · · · · · · · ·

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

None Reported

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (Manganese Sulfate; Magnesium Sulfate; Zinc Sulfate; Ferrous Sulfate; Copper Sulfate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes

Metalosate Zinc Plus

USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (Manganese Sulfate)	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	08/06/2020
Initial Date	02/02/2018

SDS Version Summary

Version	Issue Date	Sections Updated
3.8.1.1.1	08/06/2020	Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.