

Powered by Albion® Technology

Balchem[®] Plant Nutrition Research Paper

Oil Palm is one of the 16 Crops most sensitive to Boron deficiency

It is part of the cell wall that confers tissue rigidity and resistance to mechanical stress. B is part of the cell membrane

-B thick cell wall, brittle altered mechanical properties does not expand properly Al accumulation points are generated in roots

-B lower absorption of P in radical leaking points of K, sugars, amino acids and phenols

mannic et al. 2011. Annals of Botany 308 1477-1487

Materimad Riar * Lei Yan * Xisaen W/ * Saddan Hassein * Omer Arc * Concern Jann * 3.8

Cell Wall and Plasma Membrane

-B viability and germination of pollen and elongation of the pollen tube Stigma must provide the B ... it is limited by less transpiration Before symptoms of foliage deficiency it is probable that the pollination or fertilization is deficient

Reproductive growth

sprouts -B Cessation of elongation and meristematic growth of outbreaks increased AIA is a side effect of -B but is not the one that stops growth

Root elongation and shoot growth

Absorption of boron by plants

The dissociation of borates in the soil is determined by:

- pH gives solution
- Organic material
- Types of clay
- Humidity of floor
- Soil temperature

These variables determine the amount of B that will be dissociated in boric acid and that will be available in the soil solution for plant absorption.

Plants absorb or boron give solution from the soil in the form of dissociated boric acid1

Dissociation of sodium tetraborate in the soil solution

Plants absorb boron in the form of B (OH) 3 Dissociation of sodium tetra borate in the soil solution

Four B molecules are released into the soil solution as boric acid, which is bioavailable for absorption by plants along with water.

Dissociation of sodium and calcium pentaborate in the soil solution

Plants absorb boron in the form of B (OH) 3 Dissociation of sodium and calcium pent borate in the soil solution NaCaB5O9 · 8H2O

Only two B molecules are released into the soil solution as boric acid, which is bioavailable for absorption by plants along with water

Absorption Boron

Conditions Associated With Boron Deficiency

Soil

• B adsorbs strongly to amorphous Fe and Al oxides, Mg hydroxide and MO

• B that is not adsorbed is highly susceptible to leaching

- B-poor soil (<0.5 mg / I):
- coarse textures (sandy)
- low MO (<2.5%) ~ controlled release of B · organic soils (peat) · very old (no deposition of rejuvenating materials such as ash or alluvium)
- high fertility or fertilization with N, K, Ca 4.5 <pH> 7.5

Crops

- Highly productive and nutrient-demanding materials (N, P, K)
- Diseases that affect the radical system
- Little perspiration ...

Weather

- Water deficit
- Heavy, abundant or irregularly distributed precipitation

Palm Oil deficiency Boron

Soil pH affects the absorption of Boron

Peat Soil

The pH is very acidic that does not allow the absorption of microelements

The high content of organic matter sequesters the microelements

Picture Indonesia

Peat Soil

Sandy Soil

Absorption of nutrients is limited and easily leached

Curly Leaf

White Strip Leaf

White Strip Leaf

Bonefish Leaf

Boron deficiency leads to decreased pollination

Anthesis period 1 - 5 days

Pollen Viability: Boron deficiency reduces pollen germination and male sterility. Oil palm - reduced viability due to weather

Anthesis Period 1 - 3 days The highest pollination activity occurs on the day

Sprouted and non-sprouted pollen

Dr Ramles Moslin

Boron deficiency produces a low pollination of the Fruits

23

Boron deficiency in fresh fruits leads to parthenocarpic fruits (seedless), small fruits

Boron Deficiency

Cause of Boron Toxicity

Boron Toxicity

Symptoms of Toxicity

Boron Toxicity

Boron toxicity in nursery

Biocide in high concentrations Boron

Toxic Boron High concentration in Soil

Effect toxic high Concentration Boron

Em 2010, Leonie Becker, Adam Scheffczyk, Bernhard Förster, Jörg Oehlmann, Juliska Princz, Jörg Römbke e Thomas Moser do Instituto Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition de Alemania avaliaron o efeito do acido borico em varios macro e microorganismos

Test organism	Endpoint	EC ₅₀ (l/u 95% cl) [mg/kg soil (dw)]
Nitrogen transformation	Nitrate formation	>2,400
Avena sativa	Biomass fw; Shoot length	182 (119/281); 308 (n. d.)
Brassica napus	Biomass fw; Shoot length	175 (164/187); 357 (354/361)
Caenorhabditis elegans	Reproduction	747 (589/949)
Enchytraeus crypticus	Reproduction	220 (208/233)
Enchytraeus luxuriosus	Reproduction	228 (201/259)
Eisenia fetida	Reproduction	484 (465/504)
Folsomia candida	Avoidance	1,441 (183/478,293)
Poecilus cupreus	Food uptake	1,342 (249/27,465)

Amount of information on the toxicity of boric acid to soil organisms (including microbes and plants) is sufficient to support the idea of using this chemical as a reference substance in terrestrial Eco toxicological tests.

Toxicity Boron

What are the effects of boron on organisms in the environment?

Type of organism	Type of effect(s) reported	Boron <u>concentration</u> in the water		
Bacteria	Mixture of acute and chronic effects, for several types of bacteria	8 - 340 mg/litre (mainly above 18 mg/litre)		
Protozoa First very small effects, for 2 types of protozo		0.3 - 18 mg/litre		
Freshwater green algae	Highest concentration with no effect (NOEC), for several types of algae	10 - 24 mg/litre		
Blue-green algae	First very small effect for 1 type of blue-green algae	20 mg/litre		
Invertebrates	Acute effects for several types of invertebrates	95 to 1376 mg/litre (mainly 100-200 mg/litre)		
Water flea (Daphnia magna)	Highest concentration with no effect (NOEC), found in many chronic tests for this one invertebrate type	6 - 10 mg/litre		
Fish	Acute effects in several types of fish	10 to nearly 300 mg/litre		
Rainbow trout	Chronic tests with standard laboratory water (NOEC)	0.009 - 0.103 mg/litre		
Rainbow trout	Chronic tests in several natural waters (NOEC)	0.75 - > 18 mg/litre		

Table: "Reported critical boron levels for several types of environmental organism"

also have low sensitivity to boron. Invertebrates also have a low boron sensitivity, as determined from many long-term studies. Fish are the most sensitive species to boron.

PROTECTION, CONSERVATION AND IMPROVEMENT OF ECOSYSTEMS AND THE ENVIRONMENT

Boron Management Problems

Ensuring an adequate supply and absorption of B throughout the year constitutes the main challenge for the management of B in oil palm

1- Leaf chemical analysis of the leaf (1, 3, 9, 17): allows monitoring [B] on the sampling leaf shows the "accumulated history" on the leaf does not indicate the status of B in sensitive tissues (meristems) Symptoms of deficiency of B in leaf 1, reveal the deficit in the supply of B until 5 months ago, when the now visible tissue was in the bud

2- Water deficit there may be high [B] in the soil, but there is no absorption.

3- Strong precipitation events

Boron in Palm Oil

Strong Events of Precipitation and Boron

- dilute the B concentration of the soil solution
- B leaches from the zone of radical activity
- restitution from MO and other soil minerals is not fast
- transitory deficit of 1-2 days is already reflected in deformations when the sheet expands (Broshat 2005)

Boron in Palm Oil

Average Boron Demand in Palm Oil

Foliolo=Leaf, Frutos Leaf Tallos=Steam

Symptoms of B deficiency and toxicity can be found in the same leaf

symptoms originate at different times of the leaf age

Bioavailability of Soil Boron

Application of a Boron Complex Foliar

Metalosate Boron

Aminoacid Complex Boron

What is ? Metalosate

- A specific chelate mineral fertilizer designed to satisfy and improve nutrients in plants
- The chelates used by Metalosate are Amino Acid the soy bean, where amino acids are the main ingredient for the production of proteins

Research plantations Indonesia

PT. Peniti Sungai Purun

Metalosate Boron Application

0 Day

120 Day

Metalosate Boron Application

Balchem[®] Plant Nutrition Research Paper

Metalosate Boron Application

Applications Metalosate Boron

53505		Treatment		
Time	Metalosate Boron, 1 application interval 6 month	Metalosate Boron , 1 applicate interval 12 month	Control (Boron Granular)	(
0 Day				
90 Days				

Spraying Metalosate Boron

Metalosate Boron Application

Applications Metalosate Boron

60 day After Application

Application Metalosate

Fumigation equipment	Metalosate*	Doses	Lt Water	Interval ha	Application	
sprayer pump	• Boron	1 I/Ha	70 lt	180 day	Spread uniformly on one side of the plant by one hectare leaves (1 sprayed plant ± 0.5 L)	0
Drone sprayer	• Boron	0.5 l/ha	30 lt	Cada 180 dias	Pulverized on leaves of plants for one hectare (1 sprayed plant ± 0,2 L).	
Note * The typ Metalosate us adapted to the of the plant	be of ed is e condition					
		Metalosate E	Boron			

Minerals	Salts and oxides	Synthetic Chelates	METALOSATE ® FOLIAR FERTILIZER
Nitrogen (N)	1-6 hours	1-6 hours	Less than 12 minutes
Phosphorus (P)	15 days	7 to 11 days	Less than 2 hours
Potassium (K)	4 days	2 days	Less than 1 hour
Calcium (Ca)	6 days	3 days	Less than 2 hours
Magnesium (Mg)	5 hours	1 hour	Less than 1 hour
Sulfur (S)	12 days	8 days	Less than 2 hours
Iron (Fe)	2 days	1 day	Less than 2 hours
Manganese (Mn)	2 days	1 day	Less than 3 hours
Boron (B)	2 days		Less than 2 hours
Zinc (Zn)	3 days	1 day and 2 hours	Less than 2 hours

Metalosate

Metalosate Boron

balchem Solve Today. Shape Tomorrow.

Metalosate[®]

balchem.com/plant-nutrition